Citation: | SUN Zhengwei, XU Jinsheng, ZHOU Changsheng, CHEN Xiong, DU Hongying. An improved visco-hyperelastic constitutive behaviour of NEPE propellant at low and high strain rates[J]. Explosion And Shock Waves, 2021, 41(3): 031407. doi: 10.11883/bzycj-2020-0343 |
[1] |
LIU X, AO W, LIU H, et al. Aluminum agglomeration on burning surface of NEPE propellants at 3−5 MPa [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(3): 260–268. DOI: 10.1002/prep.201600131.
|
[2] |
MOONEY M. A theory of large elastic deformation [J]. Journal of Applied Physics, 1940, 11(9): 582–592. DOI: 10.1063/1.1712836.
|
[3] |
RIVLIN R S. Large elastic deformations of isotropic materials: II: some uniqueness theorems for pure, homogeneous deformation [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948, 240(822): 491–508. DOI: 10.1098/rsta.1948.0003.
|
[4] |
OGDEN R W. Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1972, 326(1567): 565–584. DOI: 10.1098/rspa.1972.0026.
|
[5] |
YEOH O H. Some forms of the strain energy function for rubber [J]. Rubber Chemistry and Technology, 1993, 66(5): 754–771. DOI: 10.5254/1.3538343.
|
[6] |
DUNCAN E J S, MARGETSON J. A nonlinear viscoelastic theory for solid rocket propellants based on a cumulative damage approach [J]. Propellants, Explosives, Pyrotechnics, 1998, 23(2): 94–104. DOI: 10.1002/(SICI)1521-4087(199804)23:2<94::AID-PREP94>3.0.CO;2-C.
|
[7] |
HINTERHOELZL R M, SCHAPERY R A. FEM implementation of a three-dimensional viscoelastic constitutive model for particulate composites with damage growth [J]. Mechanics of Time-Dependent Materials, 2004, 8(1): 65–94. DOI: 10.1023/B:MTDM.0000027683.06097.76.
|
[8] |
朱兆祥, 徐大本, 王礼立. 环氧树脂在高应变率下的热粘弹性本构方程和时温等效性 [J]. 宁波大学学报, 1988(1): 58–67.
ZHU Z X, XU D B, WANG L L. Thermoviscoelastic constitutive equation and time-temperature equivalence of epoxy resin at high strain rates [J]. Journal of Ningbo University, 1988(1): 58–67.
|
[9] |
常新龙, 赖建伟, 张晓军, 等. HTPB推进剂高应变率粘弹性本构模型研究 [J]. 推进技术, 2014, 35(1): 123–127. DOI: 10.13675/j.cnki.tjjs.2014.01.001.
CHANG X L, LAI J W, ZHANG X J, et al. High strain-rate viscoelastic constitutive model for HTPB propellant [J]. Journal of Propulsion Technology, 2014, 35(1): 123–127. DOI: 10.13675/j.cnki.tjjs.2014.01.001.
|
[10] |
杨龙, 谢侃, 裴江峰, 等. HTPB推进剂拉伸力学行为的应变速率相关超弹本构模型 [J]. 推进技术, 2017, 38(3): 687–694. DOI: 10.13675/j.cnki.tjjs.2017.03.027.
YANG L, XIE K, PEI J F, et al. A strain-rate-dependent hyperelastic constitutive model for tensile mechanical behaviour of HTPB propellant [J]. Journal of Propulsion Technology, 2017, 38(3): 687–694. DOI: 10.13675/j.cnki.tjjs.2017.03.027.
|
[11] |
WANG Z J, QIANG H F, WANG T J, et al. A thermovisco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates [J]. Mechanics of Time-Dependent Materials, 2018, 22(3): 291–314. DOI: 10.1007/s11043-017-9357-9.
|
[12] |
GUO H, GUO W G, AMIRKHIZI A V. Constitutive modeling of the tensile and compressive deformation behavior of polyurea over a wide range of strain rates [J]. Construction and Building Materials, 2017, 150: 851–859. DOI: 10.1016/j.conbuildmat.2017.06.055.
|
[13] |
韩龙, 许进升, 封涛, 等. 考虑细观脱湿损伤的NEPE推进剂粘弹性本构模型研究 [J]. 推进技术, 2017, 38(8): 1885–1892. DOI: 10.13675/j.cnki.tjjs.2017.08.027.
HAN L, XU J S, FENG T, et al. Research on viscoelastic constitutive model for NEPE composite propellant with meso-mechanics damage due to particle dewetting [J]. Journal of Propulsion Technology, 2017, 38(8): 1885–1892. DOI: 10.13675/j.cnki.tjjs.2017.08.027.
|
[14] |
DAVIES R M. A critical study of the Hopkinson pressure bar [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948, 240(821): 375–457. DOI: 10.1098/rsta.1948.0001.
|
[15] |
KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society. Section B, 1949, 62(11): 676. DOI: 10.1088/0370-1301/62/11/302.
|
[16] |
YANG L M, SHIM V P W, LIM C T. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber [J]. International Journal of Impact Engineering, 2000, 24(6−7): 545–560. DOI: 10.1016/S0734-743X(99)00044-5.
|
[17] |
Van SLIGTENHORST C, CRONIN D S, BRODLAND G W. High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus [J]. Journal of Biomechanics, 2006, 39(10): 1852–1858. DOI: 10.1016/j.jbiomech.2005.05.015.
|
[18] |
RIVLIN R S. Some topics in finite elasticity [C] // Proceedings of the First Symposium on Naval Structural Mechanics, 1960: 169–198. DOI: 10.1007/978-1-4612-2416-7_25.
|
[19] |
TRUESDELL C, NOLL W. The non-linear field theories of mechanics [M]. Berlin: Springer, 1992. DOI: 10.1007/978-3-662-13183-1.
|
[20] |
KHAJEHSAEID H, ARGHAVANI J, NAGHDABADI R, et al. A visco-hyperelastic constitutive model for rubber-like materials: a rate-dependent relaxation time scheme [J]. International Journal of Engineering Science, 2014, 79: 44–58. DOI: 10.1016/j.ijengsci.2014.03.001.
|
[21] |
FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2007, 34(3): 405–411. DOI: 10.1016/j.ijimpeng.2005.12.001.
|
[22] |
DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155–179. DOI: 10.1016/0022-5096(63)90050-4.
|