Citation: | YUE Junzheng, HONG Tao, WU Xianqian, HUANG Chenguang. A modified reaction model of aluminum dust detonation[J]. Explosion And Shock Waves, 2021, 41(8): 082101. doi: 10.11883/bzycj-2020-0349 |
[1] |
LIU X L, ZHANG Q. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures [J]. Journal of Hazardous Materials, 2015, 299: 603–617. DOI: 10.1016/j.jhazmat.2015.07.068.
|
[2] |
VEYSSIERE B, KHASAINOV B A, BRIAND A. Investigation of detonation initiation in aluminium suspensions [J]. Shock Waves, 2008, 18(4): 307–315. DOI: 10.1007/s00193-008-0136-z.
|
[3] |
FEDOROV A V, KHMEL T A. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen [J]. Combustion, Explosion, and Shock Waves, 2005, 41(4): 435–448. DOI: 10.1007/s10573-005-0054-7.
|
[4] |
BECKSTEAD M W. Correlating aluminum burning times [J]. Combustion, Explosion and Shock Waves, 2005, 41(5): 533–546. DOI: 10.1007/s10573-005-0067-2.
|
[5] |
TANGUAY V, GOROSHIN S, HIGGINS A J, et al. Aluminum particle combustion in high-speed detonation products [J]. Combustion Science and Technology, 2009, 181(4): 670–693. DOI: 10.1080/00102200802643430.
|
[6] |
BAZYN T, KRIER H, GLUMAC N. Evidence for the transition from the diffusion-limit in aluminum particle combustion [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2021–2028. DOI: 10.1016/j.proci.2006.07.161.
|
[7] |
GLORIAN J, GALLIER S, CATOIRE L. On the role of heterogeneous reactions in aluminum combustion [J]. Combustion and Flame, 2016, 168: 378–392. DOI: 10.1016/j.combustflame.2016.01.022.
|
[8] |
ZHANG F, GERRARD K, RIPLEY R C. Reaction mechanism of aluminum-particle-air detonation [J]. Journal of Propulsion and Power, 2009, 25(4): 845–858. DOI: 10.2514/1.41707.
|
[9] |
BRIAND A, VEYSSIERE B, KHASAINOV B A. Modelling of detonation cellular structure in aluminium suspensions [J]. Shock Waves, 2010, 20(6): 521–529. DOI: 10.1007/s00193-010-0288-5.
|
[10] |
BALAKRISHNAN K. Diffusion- and kinetics-limited combustion of an explosively dispersed aluminum particle [J]. Journal of Propulsion and Power, 2014, 30(2): 522–526. DOI: 10.2514/1.B35059.
|
[11] |
KWON Y S, GROMOV A A, ILYIN A P, et al. The mechanism of combustion of superfine aluminum powders [J]. Combustion and Flame, 2003, 133(4): 385–391. DOI: 10.1016/S0010-2180(03)00024-5.
|
[12] |
NIGMATULIN R I. Methods used in mechanics of continuous media for a description of multiphase mixtures [J]. Journal of Applied Mathematics and Mechanics, 1970, 34(6): 1097–1112. DOI: 10.1016/0021-8928(70)90174-7.
|
[13] |
HAYNES W M. Handbook of chemistry and physics [M]. Florida: CRC Press, 2014.
|
[14] |
LEVITAS V I, PANTOYA M L, CHAUHAN G, et al. Effect of the alumina shell on the melting temperature depression for aluminum nanoparticles [J]. The Journal of Physical Chemistry C, 2009, 113(32): 14088–14096. DOI: 10.1021/jp902317m.
|
[15] |
洪滔, 秦承森. 铝颗粒激波点火机制初探 [J]. 爆炸与冲击, 2003, 23(4): 295–299.
HONG T, QIN C S. Mechanism of shock wave ignition of aluminum particle [J]. Explosion and Shock Waves, 2003, 23(4): 295–299.
|
[16] |
PRICE E W. Combustion of metalized propellants [M]// KUO K K. Fundamentals of Solid-Propellant Combustion. New York: American Institute of Aeronautics and Astronautics, 1984: 479−513. DOI: 10.2514/5.9781600865671.0479.0513.
|
[17] |
STEINBERG T A, WILSON D B, BENZ F. The combustion phase of burning metals [J]. Combustion and Flame, 1992, 91(2): 200–208. DOI: 10.1016/0010-2180(92)90100-4.
|
[18] |
GLASSMAN I. Combustion of metals revisited thermodynamically [C]// Proceedings of the Eastern States Section of the Combustion Institute. Princeton: The Combustion Institute, 1993: 17−26.
|
[19] |
沈维道, 童钧耕. 工程热力学[M]. 4版. 北京: 高等教育出版社, 2007.
SHEN W D, TONG J G. Engineering thermodynamics [M]. 4th ed. Beijing: Higher Education Press, 2007.
|
[20] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. Berlin Heidelberg: Springer, 2009. DOI: 10.1007/b79761.
|
[21] |
TULIS A J, SELMAN J R. Detonation tube studies of aluminum particles dispersed in air [J]. Symposium (International) on Combustion, 1982, 19(1): 655–663. DOI: 10.1016/s0082-0784(82)80240-3.
|
[22] |
LIU L J, ZHANG Q, SHEN S L, et al. Evaluation of detonation characteristics of aluminum/JP-10/air mixtures at stoichiometric concentrations [J]. Fuel, 2016, 169: 41–49. DOI: 10.1016/j.fuel.2015.11.090.
|
[23] |
BENKIEWICZ K, HAYASHI K. Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement [J]. Shock Waves, 2003, 12(5): 385–402. DOI: 10.1007/s00193-002-0169-7.
|