Volume 41 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LIU Mingtao, TANG Tiegang. Key physical problems in the expanding fracture of explosively driven metallic shells[J]. Explosion And Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351
Citation: LIU Mingtao, TANG Tiegang. Key physical problems in the expanding fracture of explosively driven metallic shells[J]. Explosion And Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351

Key physical problems in the expanding fracture of explosively driven metallic shells

doi: 10.11883/bzycj-2020-0351
  • Received Date: 2020-09-24
  • Rev Recd Date: 2020-11-22
  • Publish Date: 2021-01-05
  • The expansion fracture process of metallic shells under explosive loading is an important topic in fields of weapon design. This process contains a wealth of basic science problems in materials science and mechanics, which has attracted the long-term attention of many scholars. Based on the analysis of the expansion fracture behavior of metal shells under explosive loading, three key physical problems were clarified: dynamic tensile constitutive law of metals, expansion fracture mechanism of shells and mechanism of fragment size. The current status and research trends of the three physical problems were comprehensively analyzed. For the aspect of dynamic tensile constitutive law of metals, it is need to develop some new experimental methods to stretch the material at higher strain rates, to develop the experimental techniques of expanding cylindrical and spherical shells for studying the dynamic tensile constitutive relationship of materials under three dimentional stress state, and to develop the transient acceleration measurement technique and the interpretation method of expansion ring experimental data. For the expansion fracture mechanism, the main development trends are to develop the in-situ or freezing diagnostic techniques to capture key parameters in the fracture process of shells, to use the statistical method to study the fracture behavior, to reveal the essential mechanism of the fracture mode transition and the Ivanov plastic peak phenomena, and to study the mechanism of expanding fracture shells at the micro level. For the mechanism of fragment size, it is need to study the relationship between the fragment size and all the potential control variables with the experimental and modeling method, to analyze the relationship between the micro heterogeneity of the material and the statistical distribution of the fragment size by taking the probability distribution of fracture strain as a bridge, and to analyze the influence of two-dimensional or three-dimensional effects on fragment size distribution and develop new models.
  • loading
  • [1]
    ZHANG Z B, HUANG F L, CAO Y, et al. A fragments mass distribution scaling relations for fragmenting shells with variable thickness subjected to internal explosive loading [J]. International Journal of Impact Engineering, 2018, 120: 79–94. DOI: 10.1016/j.ijimpeng.2018.05.013.
    [2]
    孙学清, 张国伟, 杨陕平. 定向战斗部破片飞散方向控制技术研究 [J]. 弹箭与制导学报, 2008, 28(1): 102–104. DOI: 10.3969/j.issn.1673-9728.2008.01.030.

    SUN X Q, ZHANG G W, YANG S P. Study on fragments dispersing direction control of directional warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 102–104. DOI: 10.3969/j.issn.1673-9728.2008.01.030.
    [3]
    徐文灿, 张连玉. 导弹预制破片战斗部杀伤威力的工程计算 [J]. 兵工学报, 1992, 13(2): 24–30.

    XU W C, ZHANG L Y. Lethality calculation for preformed fragment warheads [J]. Acta Armamentarii, 1992, 13(2): 24–30.
    [4]
    GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [5]
    HOPSON M V, SCOTT C M. Applicability of statistical descriptions of AerMet100 steel subjected to different triaxial stress states for fracture calculations [J]. Procedia Engineering, 2013, 58: 684–691. DOI: 10.1016/j.proeng.2013.05.079.
    [6]
    HOPSON M V, SCOTT C M, LAMBERT D. Applicability of statistical flaw distributions of eglin steel for fracture calculations [J]. Procedia Engineering, 2015, 103: 213–220. DOI: 10.1016/j.proeng.2015.04.029.
    [7]
    GOLOVESHKIN V A, MYAGKOV N N. Fragmentation model for expanding cylinder [J]. International Journal of Fracture, 2014, 187(2): 239–243. DOI: 10.1007/s10704-014-9936-6.
    [8]
    BOLIS C, COUNILH D, LAGRANGE J M, et al. Fragmentation of a titanium alloy shell in expansion: from experiment to simulation [J]. Procedia Engineering, 2013, 58: 672–677. DOI: 10.1016/j.proeng.2013.05.077.
    [9]
    LIU M T, REN G W, FAN C, et al. Experimental and Numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
    [10]
    NING J G, DUAN Y, XU X Z, et al. Velocity characteristics of fragments from prismatic casing under internal explosive loading [J]. International Journal of Impact Engineering, 2017, 109: 29–38. DOI: 10.1016/j.ijimpeng.2017.05.018.
    [11]
    DONG X L, YU X L, PAN S J, et al. Analysis of fracture behaviour of exploded metal cylinders with varied charge [J]. EPJ Web of Conferences, 2018, 183: 01036. DOI: 10.1051/epjconf/201818301036.
    [12]
    刘龙飞, 周强. 表面粗糙度对6061铝合金薄壁管冲击膨胀断裂性能的影响 [J]. 爆炸与冲击, 2018, 38(4): 749–758. DOI: 10.11883/bzycj-2016-0389.

    LIU L F, ZHOU Q. Effect of surface roughness on impact expansion fracture of 6061 aluminum alloy thin-walled cylindrical tube [J]. Explosion and Shock Waves, 2018, 38(4): 749–758. DOI: 10.11883/bzycj-2016-0389.
    [13]
    GURNEY R W. The initial velocities of fragments from bombs, shell and grenades[R]. BRL Report No. 405, Aberdeen: Ballistic Research Laboratory, 1943.
    [14]
    MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, Inc., 1994.
    [15]
    NEERAJ T, SAVAGE M F, TATALOVICH J, et al. Observation of tension-compression asymmetry in α and α/β titanium alloys [J]. Philosophical Magazine, 2005, 85(2/3): 279–295. DOI: 10.1080/14786430412331315707.
    [16]
    ZHOU P, BEEH E, FRIEDRICH H E. Influence of tension-compression asymmetry on the mechanical behavior of AZ31B magnesium alloy sheets in bending [J]. Journal of Materials Engineering and Performance, 2016, 25(3): 853–865. DOI: 10.1007/s11665-016-1961-3.
    [17]
    MAEDA T, NOMA N, KUWABARA T, et al. Experimental verification of the tension-compression asymmetry of the flow stresses of a high strength steel sheet [J]. Procedia Engineering, 2017, 207: 1976–1981. DOI: 10.1016/j.proeng.2017.10.1099.
    [18]
    HARDING J, WOOD E O, CAMPBELL J D. Tensile testing of materials at impact rates of strain [J]. Journal of Mechanical Engineering Science, 1960, 2(2): 88–96. DOI: 10.1243/JMES_JOUR_1960_002_016_02.
    [19]
    CHEN W W, SONG B. Split Hopkinson (Kolsky) bar-design, testing and applications [M]. New York: Springer, 2011. DOI: 10.1007/978-1-4419-7982-7.
    [20]
    JOHNSON P C, STEIN B A, DAVIS R S. Measurement of dynamic plastic flow properties under uniform stress [C] // Symposium on Dynamic Behavior of Materials. West Conshohocken: ASTM International, 1963: 195−197. DOI: 10.1520/STP42030S.
    [21]
    TANG T G, REN G W, GUO Z L, et al. An improved technique of expanding metal ring experiment under high explosive loading [J]. Review of Scientific Instruments, 2013, 84(4): 043908. DOI: 10.1063/1.4802255.
    [22]
    NIORDSON F I. A unit for testing materials at high strain rates [J]. Experimental Mechanics, 1965, 5(1): 29–32. DOI: 10.1007/BF02320901.
    [23]
    桂毓林, 孙承纬, 李强, 等. 实现金属环动态拉伸的电磁加载技术研究 [J]. 爆炸与冲击, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.

    GUI Y L, SUN C W, LI Q, et al. Experimental studies on dynamic tension of metal ring by electromagnetic loading [J]. Explosion and Shock Waves, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.
    [24]
    陈红. 电磁驱动金属膨胀环动态拉伸实验技术[D]. 宁波: 宁波大学, 2012.

    CHEN H. Dynamic tension experimental technique of electromagneticall driven expanding metal ring[D]. Ningbo: Ningbo University, 2012.
    [25]
    刘明涛, 汤铁钢, 郭昭亮, 等. 膨胀环实验平台及其在材料动力学行为研究中的应用 [J]. 实验力学, 2016, 31(1): 47–56. DOI: 10.7520/1001-4888-15-022.

    LIU M T, TANG T G, GUO Z L, et al. Expanding ring experimental platform and its application in material dynamic mechanical behavior investigation [J]. Journal of Experimental Mechanics, 2016, 31(1): 47–56. DOI: 10.7520/1001-4888-15-022.
    [26]
    LIANG M Z, LI X Y, QIN J G, et al. Improved expanding ring technique for determining dynamic material properties [J]. Review of Scientific Instruments, 2013, 84(6): 065114. DOI: 10.1063/1.4811658.
    [27]
    郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术 [J]. 爆炸与冲击, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.

    ZHENG Y X, ZHOU F H, HU S S. An SHPB-based experimental technique for dynamic fragmentations of expanding rings [J]. Explosion and Shock Waves, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.
    [28]
    AVRIEL E, LOVINGER Z, NEMIROVSKY R, et al. Investigating the strength of materials at very high strain rates using electro-magnetically driven expanding cylinders [J]. Mechanics of Materials, 2018, 117: 165–180. DOI: 10.1016/j.mechmat.2017.11.009.
    [29]
    TAYLOR G I. The fragmentation of tubular bombs [J]. Scientific Papers of GI Taylor, 1963, 3(44): 387–390.
    [30]
    胡八一, 董庆东, 韩长生, 等. 爆炸金属管的绝热剪切断裂宏观研究 [J]. 爆炸与冲击, 1992, 12(4): 319–325.

    HU B Y, DONG Q D, HAN C S, et al. The macroscopic study of adiabatic shear fracture of metal tubes under explosive loading [J]. Explosion and Shock Waves, 1992, 12(4): 319–325.
    [31]
    胡八一, 董庆东, 韩长生, 等. 爆炸金属管绝热剪切断裂的细观研究 [J]. 爆炸与冲击, 1993, 13(4): 305–312.

    HU B Y, DONG Q D, HAN C S, et al. Mesoscopic study of adiabatic shear fracture of the metal tubes under internal explosive loading [J]. Explosion and Shock Waves, 1993, 13(4): 305–312.
    [32]
    胡八一, 董庆东, 韩长生, 等. 内部爆轰加载下的钢管膨胀断裂研究 [J]. 爆炸与冲击, 1993, 13(1): 49–54.

    HU B Y, DONG Q D, HAN C S, et al. Studies of expansion and fracture of explosive-filled steel cylinders [J]. Explosion and Shock Waves, 1993, 13(1): 49–54.
    [33]
    BEETLE J C, RINNOVATORE J V, CORRIE J D. Fracture morphology of explosively loaded steel cylinders [C] // Proceedings of the Scanning Electron Microscope Symposium. Chicago, 1971: 137−144.
    [34]
    MARTINEAU R L. A viscoplastic model of expanding cylindrical shells subjected to internal explosive detonations [R]. New Mexico: Los Alamos National Lab., 1998. DOI: 10.2172/663184.
    [35]
    MARTINEAU R L, PRIME M B, ANDERSON C A, et al. An explicit model of expanding cylindrical shells subjected to high explosive detonations[R]. New Mexico: Los Alamos National Lab., 1999. DOI: 10.2172/334315.
    [36]
    MARTINEAU R L, ANDERSON C A, SMITH F W. Expansion of cylindrical shells subjected to internal explosive detonations [J]. Experimental Mechanics, 2000, 40(2): 219–225. DOI: 10.1007/BF02325049.
    [37]
    李永池, 李大红, 魏志刚, 等. 内爆炸载荷下圆管变形、损伤和破坏规律的研究 [J]. 力学学报, 1999, 31(4): 442–449. DOI: 10.3321/j.issn:0459-1879.1999.04.008.

    LI Y C, LI D H, WEI Z G, et al. Research on the deformation, damage and fracture rules of circular tubes under inside-explosive loading [J]. Acta Mechanica Sinica, 1999, 31(4): 442–449. DOI: 10.3321/j.issn:0459-1879.1999.04.008.
    [38]
    张世文, 刘仓理, 于锦泉. 微缺陷对圆管膨胀断裂的影响 [J]. 爆炸与冲击, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.

    ZHANG S W, LIU C L, YU J Q. Influences of microdefects on expanding fracture of a metal cylinder [J]. Explosion and Shock Waves, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.
    [39]
    HOGGATT C R, RECHT R F. Fracture behavior of tubular bombs [J]. Journal of Applied Physics, 1968, 39(3): 1856–1862. DOI: 10.1063/1.1656442.
    [40]
    IVANOV A G. Explosive deformation and destruction of tubes [J]. Strength of Materials, 1976, 8(11): 1303–1306. DOI: 10.1007/BF01528752.
    [41]
    OLIVE F, NICAUD A, MARILLEAU J, et al. Rupture behavior of metals in explosive expansion [J]. Institute of Physics Conference Series, 1979(17): 242–252.
    [42]
    陈大年, 王德生, 马松合, 等. 两类动态断裂 [J]. 爆炸与冲击, 1987, 7(1): 27–33.

    CHEN D N, WANG D S, MA S H, et al. Two kinds of dynamic fracture [J]. Explosion and Shock Waves, 1987, 7(1): 27–33.
    [43]
    陈大年, 尹志华. 对膨胀壳体材料失稳的一种简化处理 [J]. 爆炸与冲击, 1999, 19(3): 193–198.

    CHEN D N, YIN Z H. A simplified approach to material instability of expanding shells [J]. Explosion and Shock Waves, 1999, 19(3): 193–198.
    [44]
    FENG J P, JING F Q, ZHANG G R. Dynamic ductile fragmentation and the damage function model [J]. Journal of Applied Physics, 1997, 81(6): 2575–2578. DOI: 10.1063/1.363921.
    [45]
    汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
    [46]
    汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533.

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533.
    [47]
    金山, 汤铁钢, 孙学林, 等. 不同热处理条件下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.

    JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.
    [48]
    金山, 汤铁钢, 李庆忠, 等. 铍青铜柱壳膨胀断裂研究 [J]. 高压物理学报, 2006, 20(4): 434–438. DOI: 10.11858/gywlxb.2006.04.016.

    JIN S, TANG T G, LI Q Z, et al. Expanding fracture of beryllium bronze cylinder shell [J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 434–438. DOI: 10.11858/gywlxb.2006.04.016.
    [49]
    胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107.

    HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107.
    [50]
    XUE Q, NESTERENKO V F, MEYERS M A. Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing [J]. International Journal of Impact Engineering, 2003, 28(3): 257–280. DOI: 10.1016/S0734-743X(02)00103-3.
    [51]
    YANG Y, ZENG Y, GAO Z W. Numerical and experimental studies of self-organization of shear bands in 7075 aluminium alloy [J]. Materials Science and Engineering: A, 2008, 496(1/2): 291–302. DOI: 10.1016/j.msea.2008.07.043.
    [52]
    LOVINGER Z, RIKANATI A, ROSENBERG Z, et al. Electro-magnetic collapse of thick-walled cylinders to investigate spontaneous shear localization [J]. International Journal of Impact Engineering, 2011, 38(11): 918–929. DOI: 10.1016/j.ijimpeng.2011.06.006.
    [53]
    LOVINGER Z, RITTEL D, ROSENBERG Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders [J]. Journal of the Mechanics and Physics of Solids, 2015, 79: 134–156. DOI: 10.1016/j.jmps.2015.04.007.
    [54]
    LIU M T, GUO Z L, FAN C, et al. Modeling spontaneous shear bands evolution in thick-walled cylinders subjected to external High-strain-rate loading [J]. International Journal of Solids and Structures, 2016, 97/98: 336–354. DOI: 10.1016/j.ijsolstr.2016.07.014.
    [55]
    REN G W, GUO Z L, FAN C, et al. Dynamic shear fracture of an explosively-driven metal cylindrical shell [J]. International Journal of Impact Engineering, 2016, 95: 35–39. DOI: 10.1016/j.ijimpeng.2016.04.012.
    [56]
    HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. DOI: 10.1016/j.ijimpeng.2008.07.002.
    [57]
    MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
    [58]
    GRADY D E, OLSEN M L. A statistics and energy based theory of dynamic fragmentation [J]. International Journal of Impact Engineering, 2003, 29(1/2/3/4/5/6/7/8/9/10): 293–306. DOI: 10.1016/j.ijimpeng.2003.09.026.
    [59]
    LAMBER D E, OSBORN J, HOPSON M V. Explosively driven fragmentation experiments for continuum damage modeling [J]. Journal of Pressure Vessel Technology, 2012, 134(3): 031209. DOI: 10.1115/1.4006119.
    [60]
    HOPSON M V, SCOTT C M, PATEL R. Computational comparisons of homogeneous and statistical descriptions of AerMet100 steel subjected to high strain rate loading [J]. International Journal of Impact Engineering, 2011, 38(6): 451–455. DOI: 10.1016/j.ijimpeng.2010.10.016.
    [61]
    HOPSON M V, LAMBERT D E, WEIDERHOLD J. Computational comparisons of homogeneous and statistical descriptions of steel subjected to explosive loading [C] // Proceedings of the ASME 2010 pressure Vessels and Piping Division/K-PVP Conference. Washington: ASME, 2010: 257−262. DOI: 10.1115/PVP2010-25330.
    [62]
    ZHOU F, MOLINARI J F, RAMESH K T. An elastic–visco-plastic analysis of ductile expanding ring [J]. International Journal of Impact Engineering, 2006, 33(1/2/3/4/5/6/7/8/9/10/11/12): 880–891. DOI: 10.1016/j.ijimpeng.2006.09.070.
    [63]
    陈磊, 周风华, 汤铁钢. 韧性金属圆环高速膨胀碎裂过程的有限元模拟 [J]. 力学学报, 2011, 43(5): 861–870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675.

    CHEN L, ZHOU F H, TANG T G. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861–870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675.
    [64]
    郑宇轩, 陈磊, 胡时胜, 等. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律 [J]. 力学学报, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.

    ZHENG Y X, CHEN L, HU S S, et al. Characteristics of fragment size distribution of ductile materials fragmentized under high strainrate tension [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.
    [65]
    郑宇轩, 周风华, 胡时胜, 等. 固体的冲击拉伸碎裂 [J]. 力学进展, 2016, 46(1): 201612. DOI: 10.6052/1000-0992-16-004.

    ZHENG Y X, ZHOU F H, HU S S, et al. Fragmentations of solids under impact tension [J]. Advances in Mechanics, 2016, 46(1): 201612. DOI: 10.6052/1000-0992-16-004.
    [66]
    ZHANG H, RAVI-CHANDAR K. On the dynamics of necking and fragmentation–I. Real-time and post-mortem observations in Al 6061-O [J]. International Journal of Fracture, 2006, 142(3/4): 183–217. DOI: 10.1007/s10704-006-9024-7.
    [67]
    ZHANG H, RAVI-CHANDAR K. On the dynamics of necking and fragmentation-Ⅱ. Effect of material properties, geometrical constraints and absolute size [J]. International Journal of Fracture, 2008, 150: 3–36. DOI: 10.1007/s10704-008-9233-3.
    [68]
    ZHANG H, RAVI-CHANDAR K. On the dynamics of localization and fragmentation-Ⅳ. Expansion of Al 6061-O tubes [J]. International Journal of Fracture, 2010, 163(1): 41–65. DOI: 10.1007/s10704-009-9441-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (1162) PDF downloads(198) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return