Citation: | MA Tianbao, WANG Chentao, ZHAO Jinqing, NING Jianguo. High order pseudo arc-length method for strong discontinuity of detonation wave[J]. Explosion And Shock Waves, 2021, 41(11): 114201. doi: 10.11883/bzycj-2020-0366 |
[1] |
GAO Z, FANG L L, WANG B S, et al. Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws [J]. Computers & Fluids, 2020, 202: 104519. DOI: 10.1016/j.compfluid.2020.104519.
|
[2] |
CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws [J]. Journal of Computational Physics, 2011, 230(5): 1766–1792. DOI: 10.1016/j.jcp.2010.11.028.
|
[3] |
GANDE N R, BHISE A A. Third-order WENO schemes with kinetic flux vector splitting [J]. Applied Mathematics and Computation, 2020, 378: 125203. DOI: 10.1016/j.amc.2020.125203.
|
[4] |
LIANG D, ZHOU Z G. The conservative splitting domain decomposition method for multicomponent contamination flows in porous media [J]. Journal of Computational Physics, 2020, 400: 108974. DOI: 10.1016/j.jcp.2019.108974.
|
[5] |
TANG H Z, TANG T. Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws [J]. SIAM Journal on Numerical Analysis, 2003, 41(2): 487–515. DOI: 10.1137/S003614290138437X.
|
[6] |
TANG H Z. A moving mesh method for the Euler flow calculations using a directional monitor function [J]. Communications in Computational Physics, 2006, 1(4): 656–676.
|
[7] |
HE P, TANG H Z. An adaptive moving mesh method for two-dimensional relativistic hydrodynamics [J]. Communications in Computational Physics, 2012, 11(1): 114–146. DOI: 10.4208/cicp.291010.180311a.
|
[8] |
马天宝, 陈建良, 宁建国, 等. 爆轰波强间断问题的伪弧长算法及其人为解验证 [J]. 爆炸与冲击, 2018, 38(2): 271–278. DOI: 10.11883/bzycj-2016-0216.
MA T B, CHEN J L, NING J G, et al. A pseudo arc-length method for strong discontinuity of detonation wave and its man manufactured solution verification [J]. Explosion and Shock Waves, 2018, 38(2): 271–278. DOI: 10.11883/bzycj-2016-0216.
|
[9] |
WANG C, ZHANG X X, SHU C W, et al. Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations [J]. Journal of Computational Physics, 2012, 231(2): 653–665. DOI: 10.1016/j.jcp.2011.10.002.
|
[10] |
NING J G, YUAN X P, MA T B, et al. Positivity-preserving moving mesh scheme for two-step reaction model in two dimensions [J]. Computers & Fluids, 2015, 123: 72–86. DOI: 10.1016/j.compfluid.2015.09.011.
|
[11] |
WANG R, FENG H, SPITERI R J. Observations on the fifth-order WENO method with non-uniform meshes [J]. Applied Mathematics and Computation, 2008, 196(1): 433–447. DOI: 10.1016/j.amc.2007.06.024.
|
[12] |
SMIT J, VAN SINT ANNALAND M, KUIPERS J A M. Grid adaptation with WENO schemes for non-uniform grids to solve convection-dominated partial differential equations [J]. Chemical Engineering Science, 2005, 60(10): 2609–2619. DOI: 10.1016/j.ces.2004.12.017.
|
[13] |
HUANG W F, REN Y X, JIANG X. A simple algorithm to improve the performance of the WENO scheme on non-uniform grids [J]. Acta Mechanica Sinica, 2018, 34(1): 37–47. DOI: 10.1007/s10409-017-0715-2.
|
[1] | ZHAO Jiaxing, LI Qi, ZHANG Liang, LIU Songhan, JIANG Lin. Experimental study on mitigation effects of water mist on blast wave[J]. Explosion And Shock Waves, 2023, 43(10): 105401. doi: 10.11883/bzycj-2023-0108 |
[2] | LIU Xiaobo, LI Shuai, ZHANG Aman. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion[J]. Explosion And Shock Waves, 2022, 42(1): 014202. doi: 10.11883/bzycj-2021-0106 |
[3] | HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450 |
[4] | WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173 |
[5] | XU Weizheng, HUANG Chao, ZHANG Pan, HUANG Yu, ZENG Fan, WANG Xing, ZHENG Xianxu. A method for calculating underwater explosion shock wave parameters of slender cone-shaped charges[J]. Explosion And Shock Waves, 2022, 42(1): 014203. doi: 10.11883/bzycj-2021-0095 |
[6] | ZHOU Lang, XU Chunguang. An algorithm for building structural damage under the effect of shock wave[J]. Explosion And Shock Waves, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415 |
[7] | XU Zhiyu, TAN Yonghua, LI Xiaoming. Numerical computation of shock wave using wavelet methods[J]. Explosion And Shock Waves, 2020, 40(1): 014201. doi: 10.11883/bzycj-2018-0467 |
[8] | LIU Xuezhe, LIN Zhong, WANG Ruili, YU Yunlong. A constructed method of manufactured solutions and code verification for 2D Lagrangian radiation hydrodynamic equations[J]. Explosion And Shock Waves, 2019, 39(1): 014201. doi: 10.11883/bzycj-2017-0199 |
[9] | LI Mei, JIANG Jianwei, WANG Xin. Shock wave propagation characteristics of double layer charge explosion in the air[J]. Explosion And Shock Waves, 2018, 38(2): 367-372. doi: 10.11883/bzycj-2016-0209 |
[10] | MA Tianbao, CHEN Jianliang, NING Jianguo, YUAN Xinpeng. A pseudo arc-length method for strong discontinuity of detonation wave and its man manufactured solution verification[J]. Explosion And Shock Waves, 2018, 38(2): 271-278. doi: 10.11883/bzycj-2016-0216 |
[11] | Liu Guibing, Hou Hailiang, Zhu Xi, Zhang Guodong. Attenuation of shock wave passing through liquid droplets[J]. Explosion And Shock Waves, 2017, 37(5): 844-852. doi: 10.11883/1001-1455(2017)05-0844-09 |
[12] | Liu Na, Chen Yibing. High order spectral volume method for multi-component flows[J]. Explosion And Shock Waves, 2017, 37(1): 114-119. doi: 10.11883/1001-1455(2017)01-0114-06 |
[13] | Zhou Pei-jie, Wang Jian, Tao Gang, Zhou Jie. Attenuation characteristics of shock waves interacting with open and closed foams[J]. Explosion And Shock Waves, 2015, 35(5): 675-681. doi: 10.11883/1001-1455(2015)05-0675-07 |
[14] | Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06 |
[15] | Zhang Zhu, Jin Yan -juan. Shock wave loading of reverse detonation model[J]. Explosion And Shock Waves, 2014, 34(2): 223-228. doi: 10.11883/1001-1455(2014)02-0223-06 |
[16] | Guo Ya-li, Han Yan, Wang Li-ming. Overpressure reconstruction of shock wave based on generalized inverse theory[J]. Explosion And Shock Waves, 2014, 34(6): 764-768. doi: 10.11883/1001-1455(2014)06-0764-05 |
[17] | HouJun-liang, JiangJian-wei, MenJian-bing, WangShu-you. Dynamicresponseofthinplatewithholesunderblastloading[J]. Explosion And Shock Waves, 2013, 33(6): 662-666. doi: 10.11883/1001-1455(2013)06-0662-05 |
[18] | HOU Ri-li, ZHOU Pin, PENG Jian-xiang. NumericalsimulationofshockdamageofLY12aluminiumalloysructure[J]. Explosion And Shock Waves, 2012, 32(5): 470-474. doi: 10.11883/1001-1455(2012)05-0470-05 |
[19] | ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05 |
[20] | SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves[J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06 |
1. | 陈泽平,王晨涛,李坤,马天宝. 基于坐标变换的强间断问题伪弧长算法. 兵器装备工程学报. 2023(04): 68-76 . ![]() |