Citation: | MA Tianbao, WANG Chentao, ZHAO Jinqing, NING Jianguo. High order pseudo arc-length method for strong discontinuity of detonation wave[J]. Explosion And Shock Waves, 2021, 41(11): 114201. doi: 10.11883/bzycj-2020-0366 |
[1] |
GAO Z, FANG L L, WANG B S, et al. Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws [J]. Computers & Fluids, 2020, 202: 104519. DOI: 10.1016/j.compfluid.2020.104519.
|
[2] |
CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws [J]. Journal of Computational Physics, 2011, 230(5): 1766–1792. DOI: 10.1016/j.jcp.2010.11.028.
|
[3] |
GANDE N R, BHISE A A. Third-order WENO schemes with kinetic flux vector splitting [J]. Applied Mathematics and Computation, 2020, 378: 125203. DOI: 10.1016/j.amc.2020.125203.
|
[4] |
LIANG D, ZHOU Z G. The conservative splitting domain decomposition method for multicomponent contamination flows in porous media [J]. Journal of Computational Physics, 2020, 400: 108974. DOI: 10.1016/j.jcp.2019.108974.
|
[5] |
TANG H Z, TANG T. Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws [J]. SIAM Journal on Numerical Analysis, 2003, 41(2): 487–515. DOI: 10.1137/S003614290138437X.
|
[6] |
TANG H Z. A moving mesh method for the Euler flow calculations using a directional monitor function [J]. Communications in Computational Physics, 2006, 1(4): 656–676.
|
[7] |
HE P, TANG H Z. An adaptive moving mesh method for two-dimensional relativistic hydrodynamics [J]. Communications in Computational Physics, 2012, 11(1): 114–146. DOI: 10.4208/cicp.291010.180311a.
|
[8] |
马天宝, 陈建良, 宁建国, 等. 爆轰波强间断问题的伪弧长算法及其人为解验证 [J]. 爆炸与冲击, 2018, 38(2): 271–278. DOI: 10.11883/bzycj-2016-0216.
MA T B, CHEN J L, NING J G, et al. A pseudo arc-length method for strong discontinuity of detonation wave and its man manufactured solution verification [J]. Explosion and Shock Waves, 2018, 38(2): 271–278. DOI: 10.11883/bzycj-2016-0216.
|
[9] |
WANG C, ZHANG X X, SHU C W, et al. Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations [J]. Journal of Computational Physics, 2012, 231(2): 653–665. DOI: 10.1016/j.jcp.2011.10.002.
|
[10] |
NING J G, YUAN X P, MA T B, et al. Positivity-preserving moving mesh scheme for two-step reaction model in two dimensions [J]. Computers & Fluids, 2015, 123: 72–86. DOI: 10.1016/j.compfluid.2015.09.011.
|
[11] |
WANG R, FENG H, SPITERI R J. Observations on the fifth-order WENO method with non-uniform meshes [J]. Applied Mathematics and Computation, 2008, 196(1): 433–447. DOI: 10.1016/j.amc.2007.06.024.
|
[12] |
SMIT J, VAN SINT ANNALAND M, KUIPERS J A M. Grid adaptation with WENO schemes for non-uniform grids to solve convection-dominated partial differential equations [J]. Chemical Engineering Science, 2005, 60(10): 2609–2619. DOI: 10.1016/j.ces.2004.12.017.
|
[13] |
HUANG W F, REN Y X, JIANG X. A simple algorithm to improve the performance of the WENO scheme on non-uniform grids [J]. Acta Mechanica Sinica, 2018, 34(1): 37–47. DOI: 10.1007/s10409-017-0715-2.
|