Citation: | WEI Zihan, ZHAO Zhenyu, YE Fan, PEI Yiqun, WANG Xin, ZHANG Qiancheng, LU Tianjian. Resistance of all-metallic honeycomb sandwich structures to underwater explosion shock[J]. Explosion And Shock Waves, 2021, 41(8): 083104. doi: 10.11883/bzycj-2020-0392 |
[1] |
陈永念. 舰船水下爆炸数值仿真及抗爆结构研究[D]. 上海: 上海交通大学, 2008: 1−2.
|
[2] |
NURICK G N, OLSON M D, FAGNAN J R, et al. Deformation and tearing of blast-loaded stiffened square plates [J]. International Journal of Impact Engineering, 1995, 16(2): 273–291. DOI: 10.1016/0734-743X(94)00046-Y.
|
[3] |
朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验 [J]. 中国造船, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.
ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion [J]. Shipbuilding of China, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.
|
[4] |
梅志远, 朱锡, 刘润泉. 船用加筋板架爆炸载荷下动态响应数值分析 [J]. 爆炸与冲击, 2004, 24(1): 80–84.
MEI Z Y, ZHU X, LIU R Q. Dynamic response researches of ship’s stiffened plate structure under explosive load [J]. Explosion and Shock Waves, 2004, 24(1): 80–84.
|
[5] |
JEN C Y, TAI Y S. Deformation behavior of a stiffened panel subjected to underwater shock loading using the non-linear finite element method [J]. Materials and Design, 2010, 31(1): 325–335. DOI: 10.1016/j.matdes.2009.06.011.
|
[6] |
GUPTA N K, KUMAR P, HEGDE S. On deformation and tearing of stiffened and un-stiffened square plates subjected to underwater explosion: a numerical study [J]. International Journal of Mechanical Sciences, 2010, 52(5): 733–744. DOI: 10.1016/j.ijmecsci.2010.01.005.
|
[7] |
方斌, 朱锡, 张振华. 水下爆炸冲击波载荷作用下船底板架的塑性动力响应 [J]. 哈尔滨工程大学学报, 2008, 29(4): 326–331. DOI: 10.3969/j.issn.1006-7043.2008.04.002.
FANG B, ZHU X, ZHANG Z H. Plastic dynamic response of ship hull grillage to underwater blast loading [J]. Journal of Harbin Engineering University, 2008, 29(4): 326–331. DOI: 10.3969/j.issn.1006-7043.2008.04.002.
|
[8] |
牟金磊, 朱锡, 张振华, 等. 水下爆炸载荷作用下加筋板变形及开裂试验研究 [J]. 振动与冲击, 2008, 27(1): 57–60. DOI: 10.3969/j.issn.1000-3835.2008.01.013.
MU J L, ZHU X, ZHANG Z H, et al. Experimental study on deformation and rupture of stiffened plates subjected to underwater shock [J]. Journal of Vibration and Shock, 2008, 27(1): 57–60. DOI: 10.3969/j.issn.1000-3835.2008.01.013.
|
[9] |
KEIL A H. The response of ships to underwater explosions [R]. Washington: David Taylor Model Basin, 1961.
|
[10] |
FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109.
|
[11] |
张延昌, 顾金兰, 王自力. 蜂窝式夹层板结构单元的防护性能分析 [J]. 舰船科学技术, 2008, 30(6): 108–113. DOI: 10.3404/j.issn.1672-7649.2008.06.022.
ZHANG Y C, GU J L, WANG Z L. Research on the anti-shock capacity of square honeycomb sandwich plane [J]. Ship Science and Technology, 2008, 30(6): 108–113. DOI: 10.3404/j.issn.1672-7649.2008.06.022.
|
[12] |
王自力, 张延昌, 顾金兰. 基于夹层板抗水下爆炸舰船底部结构设计 [J]. 舰船科学技术, 2010, 32(1): 22–27. DOI: 10.3404/j.issn.1672-7649.2010.01.002.
WANG Z L, ZHANG Y C, GU J L. Anti-shock double bottom structure design of warship based on sandwich panel [J]. Ship Science and Technology, 2010, 32(1): 22–27. DOI: 10.3404/j.issn.1672-7649.2010.01.002.
|
[13] |
XUE Z Y, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering, 2004, 30(10): 1283–1305. DOI: 10.1016/j.ijimpeng.2003.08.007.
|
[14] |
WADLEY H N G, DHARMASENA K P, QUEHEILLALT D T, et al. Dynamic compression of square honeycomb structures during underwater impulsive loading [J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 2025–2048. DOI: 10.2140/jomms.2007.2.2025.
|
[15] |
MORI L F, LEE S, XUE Z Y, et al. Deformation and fracture modes of sandwich structures subjected to underwater impulsive loads [J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 1981–2006. DOI: 10.2140/jomms.2007.2.1981.
|
[16] |
任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 99−116.
|
[17] |
陈高杰, 沈晓乐, 王树乐, 等. 基于声固耦合法的环肋壳水下冲击数值仿真试验 [J]. 兵工自动化, 2015, 34(2): 7–10. DOI: 10.7690/bgzdh.2015.02.002.
CHEN G J, SHEN X L, WANG S L, et al. Numerical simulation test of ring-stiffened hull subjected to underwater shock based on coupled acoustic-structural arithmetic [J]. Ordnance Industry Automation, 2015, 34(2): 7–10. DOI: 10.7690/bgzdh.2015.02.002.
|
[18] |
YU B, HAN B, NI C Y, et al. Dynamic crushing of all-metallic corrugated panels filled with close-celled aluminum foams [J]. Journal of Applied Mechanics, 2015, 82(1): 011006. DOI: 10.1115/1.4028995.
|
[19] |
STOUT M G, FOLLANSBEE P S. Strain rate sensitivity, strain hardening, and yield behavior of 304L stainless steel [J]. Journal of Engineering Materials and Technology, 1986, 108(4): 344–353. DOI: 10.1115/1.3225893.
|
[20] |
李金河, 赵继波, 谭多望, 等. 炸药水中爆炸的冲击波性能 [J]. 爆炸与冲击, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.
LI J H, ZHAO J B, TAN D W, et al. Underwater shock wave performances of explosives [J]. Explosion and Shock Waves, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.
|
[21] |
ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD0757183 [R]. Washington: Naval Intelligence Support Center Washington DC Translation DIV, 1973.
|
[22] |
O’HARA G J, CUNNIFF P F. Scaling for shock response of equipment in different submarines [J]. Shock and Vibration, 1993, 1(2): 161–170. DOI: 10.3233/SAV-1993-1207.
|
[23] |
张延昌, 周红, 王果, 等. U型折叠式夹层板防护性能数值仿真分析 [J]. 船舶力学, 2013, 17(10): 1191–1201. DOI: 10.3969/j.issn.1007-7294.2013.10.013.
ZHANG Y C, ZHOU H, WANG G, et al. Numerical simulation analysis on protective performance of U-type corrugated cores sandwich panel [J]. Journal of Ship Mechanics, 2013, 17(10): 1191–1201. DOI: 10.3969/j.issn.1007-7294.2013.10.013.
|
[24] |
孙晓旺, 陶晓晓, 王显会, 等. 负泊松比蜂窝材料抗爆炸特性及优化设计研究 [J]. 爆炸与冲击, 2020, 40(9): 66–76. DOI: 10.11883/bzycj-2020-0011.
SUN X W, TAO X X, WANG X H, et al. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material [J]. Explosion and Shock Waves, 2020, 40(9): 66–76. DOI: 10.11883/bzycj-2020-0011.
|
[25] |
YANG M, HAN B, SU P B, et al. Axial crushing of ultralight all-metallic truncated conical sandwich shells with corrugated cores [J]. Thin-Walled Structures, 2019, 140: 318–330. DOI: 10.1016/j.tws.2019.03.048.
|
[26] |
吕小青, 王旭, 徐连勇, 等. 基于径向基函数神经网络和NSGA-Ⅱ的气保焊工艺多目标优化 [J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1013–1018. DOI: 10.11784/tdxbz201909067.
LÜ X Q, WANG X, XU L Y, et al. Multi-objective optimization of gas metal arc welding process parameters based on radial based function neural network and NSGA-Ⅱ [J]. Journal of Tianjin University (Science and Technology), 2020, 53(10): 1013–1018. DOI: 10.11784/tdxbz201909067.
|
[27] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. DOI: 10.1109/4235.996017.
|
[28] |
WANG X, LI X, YUE Z S, et al. Optimal design of metallic corrugated sandwich panels with polyurea-metal laminate face sheets for simultaneous vibration attenuation and structural stiffness [J]. Composite Structures, 2021, 256: 112994. DOI: 10.1016/j.compstruct.2020.112994.
|