Volume 41 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
XIE Fupei, XU Fei, ZENG Zhuo, ZHOU Zhongyu, GU Zhuowei. Numerical simulation on stability of composite cylindrical shell under impact compression[J]. Explosion And Shock Waves, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431
Citation: XIE Fupei, XU Fei, ZENG Zhuo, ZHOU Zhongyu, GU Zhuowei. Numerical simulation on stability of composite cylindrical shell under impact compression[J]. Explosion And Shock Waves, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431

Numerical simulation on stability of composite cylindrical shell under impact compression

doi: 10.11883/bzycj-2020-0431
  • Received Date: 2020-11-24
  • Rev Recd Date: 2021-02-04
  • Available Online: 2021-10-29
  • Publish Date: 2021-11-23
  • For the dynamic response and the instability of the composite cylindrical shell under explosive loading, many factors may affect the stability behavior of the cylindrical shell. In this paper, three main aspects, i. e. the possible defects in the manufacturing process, the spiral angle and the diameter of the copper wire were investigated. Firstly, the 2D detailed model of the composite cylindrical shell was established to calculated the dynamic response under explosive loading, in which SPH-FEM coupling algorithm was applied. In order to verify the accuracy of the structural dynamic response by using the SPH-FEM model, the simulation results of the metal epoxy composite sleeve were compared, which demonstrated the reliability and numerical accuracy. Secondly, to evaluate the factors affecting the stability of the composite cylindrical shell, an instability criterion based on the particle velocity history of inner wall of the cylindrical shell was proposed. In this method, the velocity curve of the inner wall of the composite cylindrical shell was divided into three stages, and the time corresponding to the point of the velocity surge in the third stage was taken as the instability time of the composite cylindrical shell. Thus, the compression rate of the structure corresponding to the instability under different conditions could be obtained. The results show that the defects and the diameter of copper wire have great influence on the stability of the composite cylindrical shell, while the spiral angle has little influence. Moreover, in the manufacture process of the composite cylindrical shell, it is necessary to improve the quality as much as possible to ensure the integrity of the copper wire. In addition, the parameter of the copper wire diameter should be considered in the device design and experiment, since the copper wire diameter would directly affect the thickness of each layer of the composite cylindrical shell and the defect distribution of copper wire.
  • loading
  • [1]
    BYKOV A I, DOLOTENKO M I. An MC-1 cascade magnetocumulative generator of multimegagauss magnetic fields—ideas and their realization [J]. Instruments and Experimental Techniques, 2015, 58(4): 531–538. DOI: 10.1134/S0020441215040284.
    [2]
    王涛, 汪兵, 林健宇, 等. 柱形汇聚几何中内爆驱动金属界面不稳定性 [J]. 爆炸与冲击, 2020, 40(5): 052201. DOI: 10.11883/bzycj-2019-0150.

    WANG T, WANG B, LIN J Y, et al. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry [J]. Explosion and Shock Waves, 2020, 40(5): 052201. DOI: 10.11883/bzycj-2019-0150.
    [3]
    ALTGILBERS L L, BROWN M D J, GRISHNAEV I, 等. 磁通量压缩发生器 [M]. 孙承纬, 周之奎, 译. 北京: 国防工业出版社, 2008: 3−5.
    [4]
    陆禹, 谷卓伟. 内爆磁通量压缩过程的一维磁流体计算及分析 [J]. 高压物理学报, 2017, 31(4): 419–425. DOI: 10.11858/gywlxb.2017.04.010.

    LU Y, GU Z W. One-dimensional magneto-hydrodynamics calculation and analysis of implosion magnetic flux compression process [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 419–425. DOI: 10.11858/gywlxb.2017.04.010.
    [5]
    张春波, 宋振飞, 谷卓伟, 等. 内爆压缩多层密绕螺线管的数值模拟 [J]. 爆炸与冲击, 2018, 38(5): 999–1005. DOI: 10.11883/bzycj-2016-0052.

    ZHANG C B, SONG Z F, GU Z W, et al. Numerical simulation of the multilayer coiled solenoid under implosive compression [J]. Explosion and Shock Waves, 2018, 38(5): 999–1005. DOI: 10.11883/bzycj-2016-0052.
    [6]
    赵士操, 宋振飞, 赵晓平. 基于SPH方法的纤维材料超高速碰撞模拟 [J]. 爆炸与冲击, 2013, 33(S1): 8–15.

    ZHAO S C, SONG Z F, ZHAO X P. Simulation of fiber composites under HVI based on SPH [J]. Explosion and Shock Waves, 2013, 33(S1): 8–15.
    [7]
    刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.

    LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.
    [8]
    LIU G R, LIU M B. 光滑粒子流体动力学: 一种无网格粒子法 [M]. 韩旭, 杨刚, 强洪夫, 译. 长沙: 湖南大学出版社, 2005: 27−34.
    [9]
    曾卓. 爆轰驱动多级复合套筒数值仿真研究 [D]. 西安: 西北工业大学, 2020: 18−33.
    [10]
    赵星宇, 白春华, 姚箭, 等. 燃料空气炸药爆轰产物JWL状态方程参数计算 [J]. 兵工学报, 2020, 41(10): 1921–1929. DOI: 10.3969/j.issn.1000-1093.2020.10.001.

    ZHAO X Y, BAI C H, YAO J, et al. Parameters calculation of JWL EOS of FAE detonation products [J]. Acta Armamentarii, 2020, 41(10): 1921–1929. DOI: 10.3969/j.issn.1000-1093.2020.10.001.
    [11]
    吴善幸, 陈大年, 胡金伟, 等. 高导无氧铜圆柱-平板冲击实验及不同本构模型效果比较 [J]. 爆炸与冲击, 2009, 29(3): 295–299. DOI: 10.11883/1001-1455(2009)03-0295-05.

    WU S X, CHEN D N, HU J W, et al. A cylinder-plate impact test for oxygen-free high-conductivity copper and comparison of effects of three constitutive models [J]. Explosion and Shock Waves, 2009, 29(3): 295–299. DOI: 10.11883/1001-1455(2009)03-0295-05.
    [12]
    陆禹. 柱面内爆磁压缩过程的磁流体力学数值模拟 [D]. 四川绵阳: 中国工程物理研究院, 2017: 24−37.
    [13]
    张春波. 复合结构套筒内爆压缩的数值模拟研究 [D]. 四川绵阳: 中国工程物理研究院, 2016: 33−44.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (348) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return