Volume 41 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
GAO Jinming, ZENG Dan, SUN Lei, CHEN Li, HE Chenglong. Experimental study on TNT equivalent coefficients for two new kinds of propellants[J]. Explosion And Shock Waves, 2021, 41(10): 102101. doi: 10.11883/bzycj-2020-0432
Citation: GAO Jinming, ZENG Dan, SUN Lei, CHEN Li, HE Chenglong. Experimental study on TNT equivalent coefficients for two new kinds of propellants[J]. Explosion And Shock Waves, 2021, 41(10): 102101. doi: 10.11883/bzycj-2020-0432

Experimental study on TNT equivalent coefficients for two new kinds of propellants

doi: 10.11883/bzycj-2020-0432
  • Received Date: 2020-11-24
  • Rev Recd Date: 2020-12-28
  • Available Online: 2021-09-01
  • Publish Date: 2021-10-13
  • The TNT equivalent coefficient is an important evidence to guide the blast-resistant design and safe-distance determination for dangerous goods. To find out the TNT equivalent coefficients of two new kinds of propellants (H1, H2), a series of free-field static detonation tests were performed for the two propellants (H1, H2) and flaky 2,4,6-trinitrotoluene (TNT). Five repeated tests were carried out for each explosive and the mass of the tested explosive was 10 kg in each test. And the existing method for calculating the TNT equivalent coefficients was modified. Base on the overpressure-time curves of the shock waves at different distances from the explosion centers, the TNT equivalent coefficients for overpressure and specific impulse at different scaling distances were analyzed by the modified calculation method. The results show that the propagations of shock waves induced by explosions of the propellants agree well with the similar law, and are similar with that induced by explosion of the TNT explosive. Meanwhile, the overpressures and specific impulses of shock waves induced by explosions of the two propellants are much higher than those of the TNT explosive. With the increase of scaling distance, the overpressure TNT equivalent coefficient of H1 first increases to 1.34 and then decreases, while that of H2 decrease monotonously, and the maximum value is 1.26. With the increase of the scaling distance, both the specific impulse TNT equivalent coefficients of H1 and H2 first increase and then decrease. The specific impulse TNT equivalent coefficient of H1 with the peak value 1.38 is greater than that of H2. The modified method can be used to accurately calculate the TNT equivalent coefficients of the tested samples, and the results can improve the safety design of blast-resistant structures.
  • loading
  • [1]
    王泽山. 发射药技术的展望 [J]. 中北大学学报(社会科学版), 2001(S1): 36–40; 103. DOI: 10.3969/j.issn.1673-1646.2001.z1.011.

    WANG Z S. Development and prospect of propellant techniques [J]. Journal of North China Institute of Technology (Social Sciences), 2001(S1): 36–40; 103. DOI: 10.3969/j.issn.1673-1646.2001.z1.011.
    [2]
    宁培毅. 梯恩梯当量 [J]. 现代兵器, 1982(7): 33–38.
    [3]
    张光莹, 周旭, 黄咏政, 等. 动爆冲击波特性分析方法研究 [C]// 第四届全国计算爆炸力学会议论文集. 北京: 中国力学学会, 2008: 282−287.
    [4]
    汪嗣良. 压装CL-20炸药爆轰特性参数测试 [D]. 北京: 北京理工大学, 2016: 26−43.

    WANG S L. Detonation characteristic parameters testing of pressed CL-20 explosive [D]. Beijing: Beijing Institute of Technology, 2016: 26−43.
    [5]
    王代华, 宋林丽, 张志杰. 基于ICP传感器的存储式冲击波超压测试系统 [J]. 传感技术学报, 2012, 25(4): 478–482. DOI: 10.3969/j.issn.1004-1699.2012.04.012.

    WANG D H, SONG L L, ZHANG Z J. A stored overpressure measurement system based on ICP sensor for shock wave [J]. Chinese Journal of Sensors and Actuators, 2012, 25(4): 478–482. DOI: 10.3969/j.issn.1004-1699.2012.04.012.
    [6]
    牛余雷, 冯晓军, 李媛媛, 等. 炸药爆轰参数与空中爆炸冲击波超压的关系 [J]. 火炸药学报, 2013, 36(4): 42–45; 64. DOI: 10.3969/j.issn.1007-7812.2013.04.010.

    NIU Y L, FENG X J, LI Y Y, et al. Relation of air explosion shock wave overpressure and detonation parameters of explosives [J]. Chinese Journal of Explosives and Propellants, 2013, 36(4): 42–45; 64. DOI: 10.3969/j.issn.1007-7812.2013.04.010.
    [7]
    段晓瑜, 崔庆忠, 郭学永, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究 [J]. 兵工学报, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.

    DUAN X Y, CUI Q Z, GUO X Y, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast [J]. Acta Armamentarii, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
    [8]
    王鹏, 魏晓安, 何卫东. 含双芳-3发射药的灌注炸药爆轰性能 [J]. 含能材料, 2013, 21(1): 92–96. DOI: 10.3969/j.issn.1006-9941.2013.01.020.

    WANG P, WEI X A, HE W D. Detonation performance of perfusion explosive containing SF-3 double-based propellants energetic materials [J]. Chinese Journal of Energetic Materials, 2013, 21(1): 92–96. DOI: 10.3969/j.issn.1006-9941.2013.01.020.
    [9]
    HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier, 1979: 218−219.
    [10]
    BAKER W E. Explosions in air [M]. Austin: University of Texas Press, 1974: 6−10.
    [11]
    SADOVSKYI M A. Mechanical action of air shock waves of explosion, based on experimental data [M]. Moscow: Izd Akad Nauk SSSR, 1952: 1−2.
    [12]
    聂源, 蒋建伟, 李梅. 球形装药动态爆炸冲击波超压场计算模型 [J]. 爆炸与冲击, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.

    NIE Y, JIANG J W, LI M. Overpressure calculation model of sphere charge blasting with moving velocity [J]. Explosion and Shock Waves, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.
    [13]
    李党娟, 吴慎将, 杨远生. 基于LabVIEW的冲量测试系统开发 [J]. 国外电子测量技术, 2012, 31(1): 63–66. DOI: 10.3969/j.issn.1002-8978.2012.01.018.

    LI D J, WU S J, YANG Y S. Development impulse measurement system based on LabVIEW [J]. Foreign Electronic Measurement Technology, 2012, 31(1): 63–66. DOI: 10.3969/j.issn.1002-8978.2012.01.018.
    [14]
    董守华, 李晓杰, 王海波, 等. 事故爆炸冲击波破坏准则综述 [J]. 石油化工安全技术, 1996, 12(4): 40–41.
    [15]
    蔡林刚, 李晓彬, 杜志鹏, 等. 密闭空间中内爆载荷冲量饱和现象研究 [J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(1): 85–90. DOI: 10.3963/j.issn.2095-3844.2020.01.016.

    CAI L G, LI X B, DU Z P, et al. Study on impulse saturation of internal explosion load in confined space [J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2020, 44(1): 85–90. DOI: 10.3963/j.issn.2095-3844.2020.01.016.
    [16]
    牟金磊, 朱锡, 黄晓明. 近壁面水下爆炸冲击波载荷参数研究 [J]. 海军工程大学学报, 2011, 23(1): 23–27. DOI: 10.3969/j.issn.1009-3486.2011.01.005.

    MU J L, ZHU X, HUANG X M. Parameters of shock waves from underwater explosion near structures [J]. Journal of Naval University of Engineering, 2011, 23(1): 23–27. DOI: 10.3969/j.issn.1009-3486.2011.01.005.
    [17]
    张德志, 李焰, 王等旺, 等. 球形装药近距离爆炸正反射冲击波试验研究 [J]. 兵工学报, 2009, 30(12): 1663–1667. DOI: 10.3321/j.issn:1000-1093.2009.12.018.

    ZHANG D Z, LI Y, WANG D W, et al. Experiment investigations on normal reflected blast wave near the spherical explosive [J]. Acta Armamentarii, 2009, 30(12): 1663–1667. DOI: 10.3321/j.issn:1000-1093.2009.12.018.
    [18]
    龚苹, 吴宏斌, 翟永兵, 等. 装药近地爆炸的冲击波理论与试验研究 [C]// 第九届全国爆炸力学学术会议论文集. 北京: 中国力学学会, 2012.
    [19]
    罗兴柏, 张玉令, 丁玉奎. 爆炸力学理论教程[M]. 北京: 国防工业出版社, 2016: 291−292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (600) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return