Citation: | HU Wenwei, WANG Rui, ZHAO Hui, ZHANG Li. Study on explosion-resistance performance of concrete-filled steel tubular columns considering the influence of elevated temperatures[J]. Explosion And Shock Waves, 2021, 41(11): 113102. doi: 10.11883/bzycj-2020-0444 |
[1] |
SONG L, IZZUDDIN B A, ELNASHAI A S, et al. An integrated adaptive environment for fire and explosion analysis of steel frames: Part I: analytical models [J]. Journal of Constructional Steel Research, 2000, 53(1): 63–85. DOI: 10.1016/S0143-974X(99)00040-1.
|
[2] |
IZZUDDIN B A, SONG L, ELNASHAI A S, et al. An integrated adaptive environment for fire and explosion analysis of steel frames: Part II: verification and application [J]. Journal of Constructional Steel Research, 2000, 53(1): 87–111. DOI: 10.1016/S0143-974X(99)00041-3.
|
[3] |
LIEW J Y R, CHEN H. Explosion and fire analysis of steel frames using fiber element approach [J]. Journal of Structural Engineering, 2004, 130(7): 991–1000. DOI: 10.1061/(ASCE)0733-9445(2004)130:7(991).
|
[4] |
CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606).
|
[5] |
方秦, 赵建魁, 陈力. 爆炸与火荷载联合作用下钢梁耐火极限的数值分析 [J]. 土木工程学报, 2010, 43(S2): 62–68. DOI: 10.15951/j.tmgcxb.2010.s2.031.
FANG Q, ZHAO J K, CHEN L. Numerical simulation of fire resistance of steel beams subjected to blast and fire [J]. China Civil Engineering Journal, 2010, 43(S2): 62–68. DOI: 10.15951/j.tmgcxb.2010.s2.031.
|
[6] |
赵建魁, 方秦, 陈力, 等. 爆炸与火荷载联合作用下RC梁耐火极限的数值分析 [J]. 天津大学学报(自然科学与工程技术版), 2015, 48(10): 873–880. DOI: 10.11784/tdxbz201312027.
ZHAO J K, FANG Q, CHEN L, et al. Numerical analysis of fire resistance of RC beams subjected to explosion and fire load [J]. Journal of Tianjin University (Science and Technology), 2015, 48(10): 873–880. DOI: 10.11784/tdxbz201312027.
|
[7] |
ZHAI C C, CHEN L, XIANG H B, et al. Experimental and numerical investigation into RC beams subjected to blast after exposure to fire [J]. International Journal of Impact Engineering, 2016, 97: 29–45. DOI: 10.1016/j.ijimpeng.2016.06.004.
|
[8] |
陈万祥, 郭志昆, 邹慧辉, 等. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究 [J]. 工程力学, 2017, 34(1): 180–191. DOI: 10.6052/j.issn.1000-4750.2015.07.0537.
CHEN W X, GUO Z K, ZOU H H, et al. Near-field blast-resistant test of reactive powder concrete filled steel tubular column after exposure to standard fire [J]. Engineering Mechanics, 2017, 34(1): 180–191. DOI: 10.6052/j.issn.1000-4750.2015.07.0537.
|
[9] |
邹慧辉, 陈万祥, 郭志昆, 等. 火灾后钢管RPC柱抗爆动力响应数值模拟研究 [J]. 振动与冲击, 2019, 38(21): 155–163,171. DOI: 10.13465/j.cnki.jvs.2019.21.022.
ZOU H H, CHEN W X, GUO Z K, et al. Numerical simulation for anti-blast dynamic response of fire-damaged RPC-filled steel tube columns [J]. Journal of Vibration and Shock, 2019, 38(21): 155–163,171. DOI: 10.13465/j.cnki.jvs.2019.21.022.
|
[10] |
RUAN Z, CHEN L, FANG Q. Numerical investigation into dynamic responses of RC columns subjected for fire and blast [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 10–21. DOI: 10.1016/j.jlp.2015.01.009.
|
[11] |
British Standard Institution. Design of steel structures: part 1−2: general rules-structural fire design: EN 1993-1-2: 2005 [S]. London: British Standard Institution, 2005.
|
[12] |
LIE T T, KODUR V K R. Fire resistance of steel columns filled with bar-reinforced concrete [J]. Journal of Structural Engineering, 1996, 122(1): 30–36. DOI: 10.1061/(ASCE)0733-9445(1996)122:1(30).
|
[13] |
HONG S, VARMA A H. Analytical modeling of the standard fire behavior of loaded CFT columns [J]. Journal of Constructional Steel Research, 2009, 65(1): 54–69. DOI: 10.1016/j.jcsr.2008.04.008.
|
[14] |
LI M H, ZONG Z H, LIU L, et al. Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion [J]. Engineering Structures, 2018, 159: 265–276. DOI: 10.1016/j.engstruct.2018.01.006.
|
[15] |
CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
|
[16] |
刘发起. 三面受火的矩形钢管混凝土柱抗火性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010. DOI: 10.7666/d.D264694.
LIU F Q. Fire resistance of concrete filled RHS columns under three-surface fire loading [D]. Harbin: Harbin Institute of Technology, 2010. DOI: 10.7666/d.D264694.
|
[17] |
韩林海. 钢管混凝土结构——理论与实践 [M]. 3版. 北京: 科学出版社, 2016.
HAN L H. Concrete filled steel tubular structures—theory and practice [M]. 3rd ed. Beijing: Science Press, 2016.
|
[18] |
DING J, WANG Y C. Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire [J]. Journal of Constructional Steel Research, 2008, 64(10): 1086–1092. DOI: 10.1016/j.jcsr.2007.09.014.
|
[19] |
李国强, 瞿海雁, 杨涛春, 等. 钢管混凝土柱抗爆性能试验研究 [J]. 建筑结构学报, 2013, 34(12): 69–76. DOI: 10.14006/j.jzjgxb.2013.12.010.
LI G Q, QU H Y, YANG T C, et al. Experimental study of concrete-filled steel tubular columns under blast loading [J]. Journal of Building Structures, 2013, 34(12): 69–76. DOI: 10.14006/j.jzjgxb.2013.12.010.
|
[20] |
RITCHIE C B, PACKER J A, SEICA M V et al. Behaviour and analysis of concrete-filled rectangular hollow sections subject to blast loading [J]. Journal of Constructional Steel Research, 2018, 147: 340–359. DOI: 10.1016/j.jcsr.2018.04.027.
|
[21] |
ALBRIFKANI S, WANG Y C. Explicit modelling of large deflection behaviour of restrained reinforced concrete beams in fire [J]. Engineering Structures, 2016, 121: 97–119. DOI: 10.1016/j.engstruct.2016.04.032.
|
[22] |
WANG R, HAN L H, ZHAO X L, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact [J]. Thin-Walled Structures, 2015, 97: 279–295. DOI: 10.1016/j.tws.2015.09.009.
|
[23] |
ZHAO H, WANG R, HOU C C, et al. Performance of circular CFDST members with external stainless steel tube under transverse impact loading [J]. Thin-Walled Structures, 2019, 145: 106380. DOI: 10.1016/j.tws.2019.106380.
|