Volume 41 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449
Citation: ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449

Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading

doi: 10.11883/bzycj-2020-0449
  • Received Date: 2020-12-04
  • Rev Recd Date: 2021-07-05
  • Available Online: 2021-11-08
  • Publish Date: 2021-11-23
  • According to the requirements on the soft recovery of fragments of expanding cylindrical metal shells under explosion loading, this paper presents a recovery device combining low density polyurethane foam and water medium through theoretical analysis and numerical simulation. Compared to traditional recovery device designed with a single material, the combined recovery device can reduce the amplitude of impact pressure, which is produced by the initial interaction of low impedance polyurethane foam with high speed fragments, by about 1/3 compared to the impact pressure produced by water, and maintain the high decay rate of fragment speed. It can also make full use of the advantages of high density of water medium when the fragment speed is less than 0.5 km/s, which can reduce the decay thickness of the recovery device based on single polyurethane foam. Based on the device, the recovery experiment of expansion and fracture of 304 stainless steel cylindrical shell under explosive loading is carried out. Through the measurement of the wall velocity of the recovery tank and the appearance inspection after the experiment, it is implied that the wall and bottom of the recovery tank are in good condition and can be reused. According to the statistics of the recovered fragments, the recovery rate of the fragments is more than 85%, and the internal and external interfaces of fragments are highly recognizable, the turning blade lines on the surface of the fragments are clearly visible, and several non-penetrating cracks are visible, which verified that the impact damage of the recovery device to the fragments is significantly reduced. Acording to the fracture and surface information of the fragments, the approximate position of the fragments in the metal cylindrical shell is inferred. Finally, the statistical results of the average thickness and mass distribution of the recovered fragments are given.
  • loading
  • [1]
    卢秋虹, 王宁, 范诚, 等. 壁厚对HR2钢柱壳爆轰加载下膨胀断裂行为的影响 [J]. 材料研究学报, 2020, 34(4): 241–246. DOI: 10.11901/1005.3093.2019.177.

    LU Q H, WANG N, FAN C, et al. Effect of shell thickness on expanding fracture behavior of HR2 steel cylinders under explosive loading [J]. Chinese Journal of Materials Research, 2020, 34(4): 241–246. DOI: 10.11901/1005.3093.2019.177.
    [2]
    禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.

    YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.
    [3]
    HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. DOI: 10.1016/j.ijimpeng.2008.07.002.
    [4]
    HIROE T, FUJIWARA K, HATA H, et al. Explosively driven expansion and fragmentation behavior for cylinders, spheres and rings of 304 stainless steel [J]. Materials Science Forum, 2010, 638−642: 1035–1040. DOI: 10.4028/www.scientific.net/MSF.638-642.1035.
    [5]
    马利, 胡洋, 辛健, 等. 圆柱形爆炸容器绝热剪切瞬态失效过程 [J]. 爆炸与冲击, 2012, 32(2): 136–142. DOI: 10.11883/1001-1455(2012)02-0136-07.

    MA L, HU Y, XIN J, et al. Transient failure process of explosion containment vessels subjected to adiabatic shear [J]. Explosion and Shock Waves, 2012, 32(2): 136–142. DOI: 10.11883/1001-1455(2012)02-0136-07.
    [6]
    朱文辉, 薛鸿陆, 刘仓理, 等. 爆炸容器承受内部加载的实验研究 [J]. 爆炸与冲击, 1995, 15(4): 374–381.

    ZHU W H, XUE H L, LIU C L, et al. Experimental study on the explosive chambers under internal blast loading [J]. Explosion and Shock Waves, 1995, 15(4): 374–381.
    [7]
    张绍兴, 李翔宇, 丁亮亮, 等. 聚焦式战斗部破片轴向飞散控制技术 [J]. 高压物理学报, 2018, 32(1): 015103. DOI: 10.11858/gywlxb.20170512.

    ZHANG S X, LI X Y, DING L L, et al. Axial dispersion control of focusing fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015103. DOI: 10.11858/gywlxb.20170512.
    [8]
    史志鑫, 尹建平, 王志军, 等. 预制破片的形状对破片飞散性能影响的数值模拟研究 [J]. 兵器装备工程学报, 2017, 38(12): 31–35. DOI: 10.11809/scbgxb2017.12.008.

    SHI Z X, YIN J P, WANG Z J, et al. Numerical simulation of the influence of prefabricated fragments shape on fragment scattering performance [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 31–35. DOI: 10.11809/scbgxb2017.12.008.
    [9]
    李翔宇, 卢芳云, 王志兵, 等. 可变形定向破片战斗部模型试验和数值模拟研究 [J]. 国防科技大学学报, 2006, 28(1): 121–124. DOI: 10.3969/j.issn.1001-2486.2006.01.027.

    LI X Y, LU F Y, WANG Z B, et al. A study of simulation and experiment of target-directed deformable warhead model [J]. Journal of National University of Defense Technology, 2006, 28(1): 121–124. DOI: 10.3969/j.issn.1001-2486.2006.01.027.
    [10]
    胡八一, 董庆东, 韩长生, 等. TC4钛合金自然破片的引燃机理 [J]. 爆炸与冲击, 1995, 15(3): 254–258.

    HU B Y, DONG Q D, HAN C S, et al. Analysis of the firing mechanics for Ti-6AL-4V natural fragments [J]. Explosion and Shock Waves, 1995, 15(3): 254–258.
    [11]
    汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
    [12]
    汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533.

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533.
    [13]
    宋桂飞, 李成国, 夏福君, 等. 回收战斗部破片的新型爆炸容器及应用 [J]. 爆炸与冲击, 2008, 28(4): 372–377. DOI: 10.11883/1001-1455(2008)04-0372-06.

    SONG G F, LI C G, XIA F J, et al. A new explosion vessel used to recover warhead fragments and its application [J]. Explosion and Shock Waves, 2008, 28(4): 372–377. DOI: 10.11883/1001-1455(2008)04-0372-06.
    [14]
    陈志闯, 李伟兵, 朱建军, 等. 40CrMnSiB钢圆柱壳体膨胀断裂中间状态回收试验研究 [J]. 兵工学报, 2018, 39(11): 2137–2144. DOI: 10.3969/j.issn.1000-1093.2018.11.007.

    CHEN Z C, LI W B, ZHU J J, et al. Recovery experiment study of cylindrical 40CrMnSiB steel shell in intermediate phase of expanding fracture processes [J]. Acta Armamentarii, 2018, 39(11): 2137–2144. DOI: 10.3969/j.issn.1000-1093.2018.11.007.
    [15]
    GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [16]
    AUTODYN matsum_v6. 1_review [Z]. Concord: Century Dynamics Inc, 2010.
    [17]
    MARSH S P. Los Alamos series on dynamic material properties [M]. Berkeley: University of California Press, 1980.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (294) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return