Volume 41 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
YANG Chen, LIU Mingtao, TANG Tiegang, GUO Zhaoliang, FAN Cheng. Expansion fracture mode of 7075 aluminum ring under electromagnetic loading[J]. Explosion And Shock Waves, 2021, 41(3): 032201. doi: 10.11883/bzycj-2021-0005
Citation: YANG Chen, LIU Mingtao, TANG Tiegang, GUO Zhaoliang, FAN Cheng. Expansion fracture mode of 7075 aluminum ring under electromagnetic loading[J]. Explosion And Shock Waves, 2021, 41(3): 032201. doi: 10.11883/bzycj-2021-0005

Expansion fracture mode of 7075 aluminum ring under electromagnetic loading

doi: 10.11883/bzycj-2021-0005
  • Received Date: 2021-01-05
  • Rev Recd Date: 2021-02-08
  • Available Online: 2021-03-05
  • Publish Date: 2021-03-10
  • The transition of fracture mode of 7075 aluminum ring was discovered by using electromagnetic expansion rings technique. The experimental results show that the fracture of the aluminum ring is affected by the maximum normal stress criterion at low strain rate, and tensile fracture easily occurs. Under the high strain rate, the fracture of the aluminum ring is affected by the maximum shear stress criterion and is prone to shear fracture. At the normal strain rate, the fracture of the aluminum ring is affected by both the maximum normal stress and the maximum shear stress criterion, resulting in a mixed fracture mode of tensile and shear fractures. And with the increase of strain rate, the number of fragments in the aluminum ring first increases, then decreases, and then increases again. These inflection points are the transition points of the fracture modes.
  • loading
  • [1]
    FENG X X, KUMAR A M, HIRTH J P. Mixed mode I/III fracture toughness of 2034 aluminum alloys [J]. Acta Metallurgica et Materialia, 1993, 41(9): 2755–2764. DOI: 10.1016/0956-7151(93)90144-H.
    [2]
    LIU S, CHAO Y J, ZHU X K. Tensile-shear transition in mixed mode I/III fracture [J]. International Journal of Solids and Structures, 2004, 41(22−23): 6147–6172. DOI: 10.1016/j.ijsolstr.2004.04.044.
    [3]
    BOYCE B L, KRAMER S, BOSILJEVAC T R, et al. The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading [J]. International Journal of Fracture, 2016, 198(1−2): 5–100. DOI: 10.1007/s10704-016-0089-7.
    [4]
    OKAZAWA S, USAMI T. Plastic instability simulation of steel in tension [M] // ZHAO X L. Structural Failure and Plasticity. Amsterdam: Elsevier, 2000: 775−780.DOI: 10.1016/B978-008043875-7/50253-7.
    [5]
    XUE L, WIERZBICKI T. Numerical simulation of fracture mode transition in ductile plates [J]. International Journal of Solids and Structures, 2009, 46(6): 1423–1435. DOI: 10.1016/j.ijsolstr.2008.11.009.
    [6]
    胡八一. 金属圆管在内部爆轰加载下的膨胀断裂机理研究[D]. 绵阳: 中国工程物理研究院研究生部, 1992: 20−53.

    HU B Y. Mechanism of expansion and rupture of metal pipe under internal detonation loading[D]. Mianyang: Graduate School of China Academy of Engineering Physics, 1992: 20−53.
    [7]
    汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533.

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533.
    [8]
    刘明涛, 汤铁钢, 胡海波, 等. 不同起爆方式下炸药驱动柱壳膨胀断裂的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 415–420. DOI: 10.11883/1001-1455(2014)04-0415-06.

    LIU M T, TANG T G, HU H B, et al. Numerical studies of explosion induced cylindrical shell fracture under different detonating modes [J]. Explosion and Shock Waves, 2014, 34(4): 415–420. DOI: 10.11883/1001-1455(2014)04-0415-06.
    [9]
    LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
    [10]
    胡八一, 董庆东, 韩长生, 等. 内部爆轰加载下的钢管膨胀断裂研究 [J]. 爆炸与冲击, 1993, 13(1): 49–54.

    HU B Y, DONG Q D, HAN C S, et al. Studies of expansion and fracture of explosive-filled steel cylinders [J]. Explosion and Shock Waves, 1993, 13(1): 49–54.
    [11]
    汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
    [12]
    桂毓林, 孙承纬, 李强, 等. 实现金属环动态拉伸的电磁加载技术研究 [J]. 爆炸与冲击, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.

    GUI Y L, SUN C W, LI Q, et al. Experimental studies on dynamic tension of metal ring by electromagnetic loading [J]. Explosion and Shock Waves, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.
    [13]
    种涛, 赵剑衡, 谭福利, 等. 电磁膨胀环实验设计的关键因素 [J]. 爆炸与冲击, 2013, 33(5): 544–550. DOI: 10.11883/1001-1455(2013)05-0544-07.

    CHONG T, ZHAO J H, TAN F L, et al. Key factors in design of electromagnetic ring experiment [J]. Explosion and Shock Waves, 2013, 33(5): 544–550. DOI: 10.11883/1001-1455(2013)05-0544-07.
    [14]
    陈红. 电磁驱动金属膨胀环动态拉伸实验技术[D]. 宁波: 宁波大学, 2012: 12−14.

    CHEN H. Dynamic tension experimental technique of electromagneticall driven expanding metal ring[D]. Ningbo: Ningbo University, 2012: 12−14.
    [15]
    刘明涛, 汤铁钢, 郭昭亮, 等. 膨胀环实验平台及其在材料动力学行为研究中的应用 [J]. 实验力学, 2016, 31(1): 47–56. DOI: 10.7520/1001-4888-15-022.

    LIU M T, TANG T G, GUO Z L, et al. Expanding ring experimental platform and its application in material dynamic mechanical behavior investigation [J]. Journal of Experimental Mechanics, 2016, 31(1): 47–56. DOI: 10.7520/1001-4888-15-022.
    [16]
    NIORDSON F L. A unit for testing materials at high strain rates [J]. Experimental Mechanics, 1965, 5(1): 29–32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (589) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return