Volume 41 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
WANG Mingyang, XU Tianhan, DENG Shuxin, CHEN Haoxiang. Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels[J]. Explosion And Shock Waves, 2021, 41(7): 071101. doi: 10.11883/bzycj-2021-0023
Citation: WANG Mingyang, XU Tianhan, DENG Shuxin, CHEN Haoxiang. Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels[J]. Explosion And Shock Waves, 2021, 41(7): 071101. doi: 10.11883/bzycj-2021-0023

Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels

doi: 10.11883/bzycj-2021-0023
  • Received Date: 2021-01-18
  • Rev Recd Date: 2021-04-27
  • Available Online: 2021-06-17
  • Publish Date: 2021-07-05
  • Based on the research of Academician Tan Tjong-Kie on the long-term stability mechanics of underground tunnel and considering Academician Sadovsky’s structural hierarchy theories on complex geological rock masses, the inherent statistical mechanical properties of inhomogeneous structure and closed stress in deep rock masses were investigated. Two mechanical problems were mainly studied, i.e. characteristics of inherent non-uniform deformation and closed stress of rock masses, and long-term stability of deep tunnels. The quantitative mathematical characterization of inherent non-uniform deformation and closed stress of rock masses were given using the method of statistical mechanics. Based on the law of mass conservation, a general calculation method of long-term stability and deformation of rock masses surrounding deep level tunnels was proposed. The Maxwell model was used to calculate the threshold of splitting. A post-peak failure model of rock was established to estimate the in-situ stress at which rock undergoes post-peak failure. With the help of the theory of the hirerachical structure of rock masses, the maximum value of rock displacement due to splitting dilatation was obtained. A dimensionless energy factor was introduced to define the extent of zonal disintegration of surrounding rock masses. It was concluded that the splitting and dilatancy deformation is the main part of the deformation of surrounding rocks. The reasons why unloading splitting failure is more likely to take place in rock masses surrounding deep level tunnels were explained. The split evolution pattern of rock masses surrounding deep level tunnels and the calculation method of dilatancy displacement were obtained. The calculation results of the range of loosening zone, the location of the rupture zone in rock masses surrounding deep level tunnels, and the displacement of the sidewall were compared with the existing monitoring data in the underground powerhouse of the Jinping Ⅰ Hydropower Station, and the agreement is good.
  • loading
  • [1]
    陈宗基. 地下巷道长期稳定性的力学问题 [J]. 岩石力学与工程学报, 1982, 1(1): 1–20.

    CHEN Z J. The mechanical problems for the long-term stability of ground galleries [J]. Chinese Journal of Rock Mechanics and Engineering, 1982, 1(1): 1–20.
    [2]
    陈宗基, 吴海青. 我国在复杂岩层中的巷道掘进——兼论构造应力与时间效应的重要性 [J]. 岩石力学与工程学报, 1988, 7(1): 1–14. DOI: 10.3321/j.issn:1000-324X.1999.03.022.

    CHEN Z J, WU H Q. Tunnelling in complex rock formations in China—importance of geotectonic stress and time effects [J]. Chinese Journal of Rock Mechanics and Engineering, 1988, 7(1): 1–14. DOI: 10.3321/j.issn:1000-324X.1999.03.022.
    [3]
    陈宗基, 康文法. 岩石的封闭应力、蠕变和扩容及本构方程 [J]. 岩石力学与工程学报, 1991, 10(4): 299–312.

    CHEN Z J, KANG W F. On the locked in stress, creep and dilatation of rocks, and the constitutive equations [J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(4): 299–312.
    [4]
    陈宗基. 根据流变学与地球动力学观点研究新奥法 [J]. 岩石力学与工程学报, 1988, 7(2): 97–106.

    CHEN Z J. The NATM studied from the viewpoint of rheology and geodynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 1988, 7(2): 97–106.
    [5]
    陈宗基, 石泽全, 于智海, 等. 用8000 kN多功能三轴仪测量脆性岩石的扩容、蠕变及松弛 [J]. 岩石力学与工程学报, 1989, 8(2): 97–118.

    CHEN Z J, SHI Z Q, YU Z H, et al. Dilatancy creep and relaxation of brittle rocks measured with the 8000 kN multipurpose triaxial apparatus [J]. Chinese Journal of Rock Mechanics and Engineering, 1989, 8(2): 97–118.
    [6]
    ADUSHKIN V V, SPIVAK A A. Geomechanics of large-scale explosions [M]. Moscow: Nedra, 1993.
    [7]
    SADOVSKY M A. Nature of lumpiness of rock [J]. Doklady Akademii Nauk SSSR, 1979, 247(4): 829–831.
    [8]
    KURLENYA M V, ADUSHKIN V V, OPARIN V N. Alternating reaction of rocks to dynamic action [J]. Doklady Akademii Nauk SSSR, 1992, 2: 323.
    [9]
    KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics. PartⅠ [J]. Journal of Mining Science, 1999, 35(3): 216–230. DOI: 10.1007/BF02550237.
    [10]
    KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics. PartⅡ [J]. Journal of Mining Science, 2000, 36(4): 305–326. DOI: 10.1023/A:1026673105750.
    [11]
    钱七虎. 战略防护工程面临的核钻地弹威胁及连续介质力学模型的不适用性 [M]//钱七虎. 钱七虎院士论文选集. 北京: 科学出版社, 2007.
    [12]
    KOCHARYAN G G, SPIVAK A A. BUDKOV A M Movement of rock blocks during large-scale underground explosion. Part Ⅱ: estimates by analytical models, numerical calculations, and comparative analysis of theoretical and experimental data [J]. Journal of Mining Science, 2001, 37(2): 149–168. DOI: 10.1023/A:1012327627277.
    [13]
    KOCHARYAN G G, SPIVAK A A. Movement of rock blocks during large-scale underground explosions. PartⅠ: experimental data [J]. Journal of Mining Science, 2001, 37(1): 64–76. DOI: 10.1023/A:1016736919590.
    [14]
    陈宗基. 岩爆的工程实录、理论与控制 [J]. 岩石力学与工程学报, 1987, 6(1): 1–18.

    CHEN Z J. Rockbursts, case records, theory and control [J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(1): 1–18.
    [15]
    ADUSHKIN V V, OPARIN V N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. PartⅠ [J]. Journal of Mining Science, 2012, 48(2): 203–222. DOI: 10.1134/S1062739148020013.
    [16]
    ADUSHKIN V V, SPIVAK A A. Chapter 8: the influence of faults, joints, and fractures, on mechanical effects of underground nuclear explosions [M]// ANASTASIA S, PAUL R, trans. Underground Explosions. 2015: 431−479.
    [17]
    黄书岭, 王继敏, 丁秀丽, 等. 基于层状岩体卸荷演化的锦屏Ⅰ级地下厂房洞室群稳定性与调控 [J]. 岩石力学与工程学报, 2011, 30(11): 2203–2216.

    HUANG S L, WANG J M, DING X L, et al. Stability and control for underground caverns of JinpingⅠ hydropower station based on unloading evolution of layered rockmass [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2203–2216.
    [18]
    QIAN Q H, ZHOU X P. Failure behaviors and rock deformation during excavation of underground cavern group for Jinping I hydropower station [J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2639–2651. DOI: 10.1007/s00603-018-1518-x.
    [19]
    FENG X T, PEI S F, JIANG Q, et al. Deep fracturing of the hard rock surrounding a large underground cavern subjected to high geostress: in situ observation and mechanism analysis [J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2155–2175. DOI: 10.1007/s00603-017-1220-4.
    [20]
    ZHAO J, FENG X T, ZHANG X W, et al. Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression [J]. Engineering Geology, 2018, 232: 160–170. DOI: 10.1016/j.enggeo.2017.11.008.
    [21]
    李帅军, 冯夏庭, 徐鼎平, 等. 白鹤滩水电站主厂房第Ⅰ层开挖期围岩变形规律与机制研究 [J]. 岩石力学与工程学报, 2016, 35(S2): 3947–3959. DOI: 10.13722/j.cnki.jrme.2016.0799.

    LI S J, FENG X T, XU D P, et al. Study of the characteristics and mechanism of surrounding rock deformation during the first layer excavation in Baihetan hydorpower station underground main powerhouses [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3947–3959. DOI: 10.13722/j.cnki.jrme.2016.0799.
    [22]
    REVUZHENKO A P. Mechanics of elastoplastic media and nonstandard analysis [M]. Novosbirsk: Izd, NGU, 2000.
    [23]
    WANG M Y, LI J, MA L J, et al. Study on the characteristic energy factor of the deep rock mass under weak disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3165–3173. DOI: 10.1007/s00603-016-0968-2.
    [24]
    王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题Ⅲ: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.

    WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part Ⅲ: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
    [25]
    王明洋, 陈昊祥, 李杰, 等. 深部巷道分区破裂化计算理论与实测对比研究 [J]. 岩石力学与工程学报, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.

    WANG M Y, CHEN H X, LI J, et al. Theoretical research on zonal disintegration of rock masses around deep tunnels and comparisons with in-situ observations [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.
    [26]
    李杰, 陈伟, 施存程, 等. 基于块系构造的大规模地下爆炸不可逆位移计算方法 [J]. 爆炸与冲击, 2018, 38(6): 1271–1277. DOI: 10.11883/bzycj-2017-0201.

    LI J, CHEN W, SHI C C, et al. Calculation method of irreversible displacement region radius based on block hierarchical structure under large-scale underground explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1271–1277. DOI: 10.11883/bzycj-2017-0201.
    [27]
    ADUSHKIN V V, SPIVAK A A. Underground explosions, section 7.2: description of block deformations [M]. ANASTASIA S, PAUL R, trans, 2015: 424−428.
    [28]
    王明洋, 范鹏贤, 李文培. 岩石的劈裂和卸载破坏机制 [J]. 岩石力学与工程学报, 2009, 29(2): 234–241.

    WANG M Y, FAN P X, LI W P. Mechanism of splitting and unloading failure of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 29(2): 234–241.
    [29]
    LI J, FAN P X, WANG M Y. The stress conditions of rock core disking based on an energy analysis [J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 465–470. DOI: 10.1007/s00603-018-1634-7.
    [30]
    DENG S X, LI J, JIANG H M, et al. Experimental and theoretical study of the fault slip events of rock masses around underground tunnels induced by external disturbances [J]. Engineering Geology, 2018, 233: 191–199. DOI: 10.1016/j.enggeo.2017.12.007.
    [31]
    李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题(Ⅰ): 一维块系岩体波动特性的试验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 38–50. DOI: 10.13722/j.cnki.jrme.2017.0490.

    LI J, JIANG H M, WANG M Y, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅰ: experimental research on properties of one-dimensional wave propagation in block rock masses [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 38–50. DOI: 10.13722/j.cnki.jrme.2017.0490.
    [32]
    李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题(Ⅱ): 冲击扰动诱发岩块滑移的物理模拟试验 [J]. 岩石力学与工程学报, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.

    LI J, JIANG H M, WANG M Y, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅱ: physical model test on sliding of rock blocks triggered by external disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.
    [33]
    BRADY H G, BROWN E T. 地下采矿岩石力学 [M]. 3版. 佘诗刚, 朱万成, 赵文, 等译. 北京: 科学出版社, 2011: 264−269.

    BRADY H G, BROWN E T. Rock mechanics for underground mining [M]. 3rd ed. SHE Shigang, ZHU Wangcheng, ZHAO Wen, et al, trans. Beijing: Science Press, 2001: 264−269.
    [34]
    KUZNETSOV G N. Contemporary Problems in Rock Mechanics [M]. Moscow: Nauka, 1972.
    [35]
    BALLIVY G, DAYRE M. The mechanical properties of rocks [J]. Bulletin of the International Association of Engineering Geology, 1984, 29: 339–342. DOI: 10.1007/BF02594432.
    [36]
    SHEMYAKIN E I. Two problems in rock mechanics arising out of the working of deep ore or coal deposits [J]. Soviet Mining, 1975, 11(6): 632–646. DOI: 10.1007/BF02507493.
    [37]
    SHEMYAKIN E I. On invariants of the stress-strain state in mathematical models for mechanics of continua [J]. Doklady Physics, 2000, 45(8): 419–421. DOI: 10.1134/1.1310737.
    [38]
    WILSON A H. The stability of underground workings in the soft rocks of the Coal Measures [J]. International Journal of Mining Engineering, 1983, 1(2): 91–187. DOI: 10.1007/BF00880785.
    [39]
    NIKOLAEVSKIY V N. Geomechanics and fluidodynamics: with applications to reservoir engineering [M]. Dordrecht: Springer, 1996.
    [40]
    NIKITIN L V, ODINTSEV V N. A dilatancy model of tensile macrocracks in compressed rock [J]. Fatigue & Fracyure of Engineering Materials & Structures, 1999, 22(11): 1003–1009.
    [41]
    SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground mines, part Ⅲ: theoretical concepts [J]. Soviet Mining, 1987, 23(1): 1–6. DOI: 10.1046/j.1460-2695.1999.00232.x.
    [42]
    SHEMYAKIN E I, KURLENYA M V, OPARIN V N, et al. Zonal disintegration of rocks around underground workings. IV. practical applications [J]. Soviet Mining, 1989, 25(4): 297–302. DOI: 10.1007/BF02528546.
    [43]
    周钟, 巩满福, 侯东奇, 等. 四川省雅砻江锦屏Ⅰ级水电站地下厂房洞室群施工期围岩稳定与支护设计报告(4) [R]. 成都: 中国水电工程顾问集团成都勘测设计研究院, 2008.

    ZHOU Z, GONG M F, HOU D Q, et al. Report on surrounding rock mass stability and support design for underground powerhouse caverns group construction of Jinping Ⅰ hydropower project located on Yalong River (4) [R]. Chengdu: HydroChina Chengdu Engineering Corporation, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (625) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return