Volume 41 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
ZHANG Hetao, NING Jianguo, XU Xiangzhao, MA Tianbao. A strong coupling prediction-correction immersed boundary method[J]. Explosion And Shock Waves, 2021, 41(9): 094201. doi: 10.11883/bzycj-2021-0129
Citation: ZHANG Hetao, NING Jianguo, XU Xiangzhao, MA Tianbao. A strong coupling prediction-correction immersed boundary method[J]. Explosion And Shock Waves, 2021, 41(9): 094201. doi: 10.11883/bzycj-2021-0129

A strong coupling prediction-correction immersed boundary method

doi: 10.11883/bzycj-2021-0129
  • Received Date: 2021-04-14
  • Rev Recd Date: 2021-05-06
  • Available Online: 2021-08-09
  • Publish Date: 2021-09-14
  • In the traditional immersed boundary methods for solving compressible fluid-structure interaction problems, conservation is one of the problems that must be considered. When the coupling boundary moves on the fixed grid, the structure coverage will change, resulting in many dead elements and emerging elements on the fluid grid. In the ghost-cell immersed boundary method, the reconstructed grid can not maintain the strict mass conservation when the dead elements and emerging elements appear. In order to overcome the shortcomings of traditional methods, a strong coupling prediction-correction immersed boundary method for compressible fluid-structure interaction problems was proposed. Firstly, the matrix representation of a general fluid-structure coupling system was described, and a strong coupling Gauss-Seidel iterative scheme of fluid-structure coupling system was derived. Furthermore, a prediction-correction scheme was derived, and a prediction-correction immersed boundary method was proposed. The fluid-structure coupling boundary was regarded as a free surface, and the space originally occupied by the solid was initialized as zero mass elements, allowing the fluid to pass through the coupling boundary freely. For the calculation of fluid, the second-order MUSCL finite volume scheme with the minmod limiter and the AUSM+-up flux based on Zha-Bilgen splitting were used to advance the time step with the third-order Runge-Kutta scheme. In the correction step, the transport process was realized by a set of mass conservation transport rules. The transport algorithm could be summarized as marking the fluid inside the boundary, dividing and moving the fluid in a uniform way according to the marking order, generating a flow pointing to the outside of the boundary, and finally applying a velocity correction near the boundary to ensure the no-slip condition. The marking and transport algorithm avoided the tedious geometric treatment of the cut-cells, and ensured the easy implementation of the algorithm. For the calculation of solids, the first-order difference scheme and the implicit dynamic finite element scheme were used to solve the rigid body and linear elastic body respectively, and the Gauss quadrature was used to obtain the coupling force on the solid surface. The one-dimensional and two-dimensional problems were calculated by the prediction-correction immersed boundary method. In the one-dimensional piston problem, the accuracy, conservation and convergence of the method were investigated by comparing the results with those in the literature. In the two-dimensional shock wave impact problem, the experimental optical schlieren images were compared with those obtained by the numerical simulation, and the deflection history of the plate structure was investigated. The study shows that this method can accurately maintain the mass conservation of the flow field and has the advantage of easy implementation, which is different from the traditional ghost-cell method and the cut-cell method. This method has the first-order convergence accuracy, and can accurately predict the flow field after shock diffraction and the deflection of plate under shock waves. It provides a new idea for the development of fluid-structure coupling algorithms.
  • loading
  • [1]
    PESKIN C S. Flow patterns around heart valves: a numerical method [J]. Journal of Computational Physics, 1972, 10(2): 252–271. DOI: 10.1016/0021-9991(72)90065-4.
    [2]
    PESKIN C S. Numerical analysis of blood flow in the heart [J]. Journal of Computational Physics, 1977, 25(3): 220–252. DOI: 10.1016/0021-9991(77)90100-0.
    [3]
    王力, 田方宝. 浸入边界法及其在可压缩流动中的应用和进展 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 094703. DOI: 10.1360/SSPMA2018-00191.

    WANG L, TIAN F B. Recent progress of immersed boundary method and its applications in compressible fluid flow [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(9): 094703. DOI: 10.1360/SSPMA2018-00191.
    [4]
    SEO J H, MITTAL R. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries [J]. Journal of Computational Physics, 2011, 230(4): 1000–1019. DOI: 10.1016/j.jcp.2010.10.017.
    [5]
    王力, 田方宝. 弹性拍翼悬停时的流固耦合效应 [J]. 气体物理, 2020, 5(4): 21–30. DOI: 10.19527/j.cnki.2096-1642.0812.

    WANG L, TIAN F B. Fluid-structure interaction of flexible flapping wing in hovering flight [J]. Physics of Gases, 2020, 5(4): 21–30. DOI: 10.19527/j.cnki.2096-1642.0812.
    [6]
    CHENG L, DU L, WANG X Y, et al. A semi-implicit immersed boundary method for simulating viscous flow-induced sound with moving boundaries [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113438. DOI: 10.1016/j.cma.2020.113438.
    [7]
    赵西增, 付英男, 张大可, 等. 紧致插值曲线方法在流向强迫振荡圆柱绕流中的应用 [J]. 力学学报, 2015, 47(3): 441–450. DOI: 10.6052/0459-1879-14-387.

    ZHAO X Z, FU Y N, ZHANG D K, et al. Application of a CIP-based numerical simulation of flow past an in-line forced oscillating circular cylinder [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 441–450. DOI: 10.6052/0459-1879-14-387.
    [8]
    段松长, 赵西增, 叶洲腾, 等. 错列角度对双圆柱涡激振动影响的数值模拟研究 [J]. 力学学报, 2018, 50(2): 244–253. DOI: 10.6052/0459-1879-17-345.

    DUAN S C, ZHAO X Z, YE Z T, et al. Numerical study of staggered angle on the vortex-induced vibration of two cylinders [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244–253. DOI: 10.6052/0459-1879-17-345.
    [9]
    杨明, 刘巨保, 岳欠杯, 等. 涡激诱导并列双圆柱碰撞数值模拟研究 [J]. 力学学报, 2019, 51(6): 1785–1796. DOI: 10.6052/0459-1879-19-224.

    YANG M, LIU J B, YUE Q B, et al. Numerical simulation on the vortex-induced collision of two side-by-side cylinders [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1785–1796. DOI: 10.6052/0459-1879-19-224.
    [10]
    陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响 [J]. 力学学报, 2019, 51(2): 432–440. DOI: 10.6052/0459-1879-18-208.

    CHEN W L, JI C N, XU D. Effects of the added cylinders with different control angles on the vortex-induced vibrations of a circular cylinder [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 432–440. DOI: 10.6052/0459-1879-18-208.
    [11]
    HOSSEINJANI A A, ROOHI A H. Immersed boundary method for MHD unsteady natural convection around a hot elliptical cylinder in a cold rhombus enclosure filled with a nanofluid [J]. SN Applied Sciences, 2021, 3(2): 270. DOI: 10.1007/s42452-021-04221-3.
    [12]
    YE H X, CHEN Y, MAKI K. A discrete-forcing immersed boundary method for turbulent-flow simulations [J]. Proceedings of the Institution of Mechanical Engineers, 2021, 235(1): 188–202. DOI: 10.1177/1475090220927245.
    [13]
    SOTIROPOULOS F, YANG X. Immersed boundary methods for simulating fluid-structure interaction [J]. Progress in Aerospace Sciences, 2014, 65: 1–21. DOI: 10.1016/j.paerosci.2013.09.003.
    [14]
    YOUSEFZADEH M, BATTIATO I. High order ghost-cell immersed boundary method for generalized boundary conditions [J]. International Journal of Heat and Mass Transfer, 2019, 137: 585–598. DOI: 10.1016/j.ijheatmasstransfer.2019.03.061.
    [15]
    吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究 [J]. 物理学报, 2017, 66(22): 224702. DOI: 10.7498/aps.66.224702.

    WU X D, LIU H P, CHEN F. A method combined immersed boundary with multi-relaxation-time lattice Boltzmann flux solver for fluid-structure interaction [J]. Acta Physica Sinica, 2017, 66(22): 224702. DOI: 10.7498/aps.66.224702.
    [16]
    BOUKHARFANE R, EUGȆNIO RIBEIRO F H, BOUALI Z, et al. A combined ghost-point-forcing/direct-forcing immersed boundary method (IBM) for compressible flow simulations [J]. Computers and Fluids, 2018, 162: 91–112. DOI: 10.1016/j.compfluid.2017.11.018.
    [17]
    MAJUMDAR S, IACCARINO G, DURBIN P. RANS solvers with adaptive structured boundary non-conforming grids [J]. Center for Turbulence Research. Annual Research Briefs, 2001: 353–366.
    [18]
    朱祥德, 陈春刚, 肖锋. 一种基于多矩的有限体积浸入边界法 [J]. 计算物理, 2010, 27(3): 342–352. DOI: 10.19596/j.cnki.1001-246x.2010.03.004.

    ZHU X D, CHEN C G, XIAO F. A multi-moment immersed-boundary finite-volume scheme [J]. Chinese Journal of Computational Physics, 2010, 27(3): 342–352. DOI: 10.19596/j.cnki.1001-246x.2010.03.004.
    [19]
    LEE J M, YOU D H. An implicit ghost-cell immersed boundary method for simulations of moving body problems with control of spurious force oscillations [J]. Journal of Computational Physics, 2013, 233(1): 295–314. DOI: 10.1016/j.jcp.2012.08.044.
    [20]
    辛建建, 石伏龙, 金秋. 一种径向基函数虚拟网格法数值模拟复杂边界流动 [J]. 物理学报, 2017, 66(4): 044704. DOI: 10.7498/aps.66.044704.

    XIN J J, SHI F L, JIN Q. Numerical simulation of complex immersed boundary flow by a radial basis function ghost cell method [J]. Acta Physica Sinica, 2017, 66(4): 044704. DOI: 10.7498/aps.66.044704.
    [21]
    XIN J J, LI T Q, SHI F L. A radial basis function for reconstructing complex immersed boundaries in ghost cell method [J]. Journal of Hydrodynamics, 2018, 30(5): 890–897. DOI: 10.1007/s42241-018-0097-3.
    [22]
    石伏龙, 辛建建, 马麟. 梯度增量level set/虚拟网格法模拟波浪结构物相互作用 [J]. 工程热物理学报, 2018, 39(11): 2420–2428.

    SHI F L, XIN J J, MA L. A gradient-augmented level set/ghost cell method for the simulation of wave structure interaction [J]. Journal of Engineering Thermophysics, 2018, 39(11): 2420–2428.
    [23]
    QU Y G, SHI R C, BATRA R C. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids [J]. Journal of Computational Physics, 2018, 354: 672–691. DOI: 10.1016/j.jcp.2017.10.045.
    [24]
    HAJI MOHAMMADI M, SOTIROPOULOS F, BRINKERHOFF J. Moving least squares reconstruction for sharp interface immersed boundary methods [J]. International Journal for Numerical Methods, 2019, 90(2): 57–80. DOI: 10.1002/fld.4711.
    [25]
    雷悦, 石伏龙. 虚拟网格法模拟静止或运动并列布置双圆柱绕流现象 [J]. 工程热物理学报, 2020, 41(8): 1974–1983.

    LEI Y, SHI F L. A ghost cell method for simulating flows around stationary of moving twin cylinders in a side-by-side arrangement [J]. Journal of Engineering Thermophysics, 2020, 41(8): 1974–1983.
    [26]
    XIE F T, QU Y G, ISLAM M A, et al. A sharp-interface Cartesian grid method for time-domain acoustic scattering from complex geometries [J]. Computers and Fluids, 2020, 202: 104498. DOI: 10.1016/j.compfluid.2020.104498.
    [27]
    CHI C, ABDELSAMIE A, THÉVENIN D. A directional ghost-cell immersed boundary method for incompressible flows [J]. Journal of Computational Physics, 2020, 404: 109122. DOI: 10.1016/j.jcp.2019.109122.
    [28]
    ZHENG K Y, ZHAO X Z, YANG Z J, et al. Numerical simulation of water entry of a wedge using a modified ghost-cell immersed boundary method [J]. Journal of Marine Science and Technology, 2020, 25(2): 589–608. DOI: 10.1007/s00773-019-00666-9.
    [29]
    CLARKE D K, HASSAN H A, SALAS M D. Euler calculations for multielement airfoils using Cartesian grids [J]. AIAA Journal, 1986, 24(3): 353–358. DOI: 10.2514/3.9273.
    [30]
    MEYER M, DEVESA A, HICKEL S, et al. A conservative immersed interface method for large-eddy simulation of incompressible flows [J]. Journal of Computational Physics, 2010, 229(18): 6300–6317. DOI: 10.1016/j.jcp.2010.04.040.
    [31]
    MONASSE L, DARU V, MARIOTTI C, et al. A conservative coupling algorithm between a compressible flow and a rigid body using an embedded boundary method [J]. Journal of Computational Physics, 2012, 231(7): 2977–2994. DOI: 10.1016/j.jcp.2012.01.002.
    [32]
    SCHNEIDERS L, GÜNTHER C, MEINKE M, et al. An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows [J]. Journal of Computational Physics, 2016, 311: 62–86. DOI: 10.1016/j.jcp.2016.01.026.
    [33]
    BRADY P T, LIVESCU D. Foundations for high-order, conservative cut-cell methods: stable discretizations on degenerate meshes [J]. Journal of Computational Physics, 2021, 426: 109794. DOI: 10.1016/j.jcp.2020.109794.
    [34]
    SEO J H, MITTAL R. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations [J]. Journal of Computational Physics, 2011, 230(19): 7347–7363. DOI: 10.1016/j.jcp.2011.06.003.
    [35]
    张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010: 279–288.

    ZHANG D L. A course in computational fluid dynamics [M]. Beijing: Higher Education Press, 2010: 279–288.
    [36]
    TORO E F, VÁZQUEZ-CENDÓN M E. Flux splitting schemes for the Euler equations [J]. Computers and Fluids, 2012, 70: 1–12. DOI: 10.1016/j.compfluid.2012.08.023.
    [37]
    LIOU M S. A sequel to AUSM, part II: AUSM+-up for all speeds [J]. Journal of Computational Physics, 2006, 214(1): 137–170. DOI: 10.1016/j.jcp.2005.09.020.
    [38]
    王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.

    WANG X C. Finite element method [M]. Beijing: Tsinghua University Press, 2003.
    [39]
    李亭鹤, 阎超. 一种新的分区重叠洞点搜索方法-感染免疫法 [J]. 空气动力学学报, 2001, 19(2): 156–160. DOI: 10.3969/j.issn.0258-1825.2001.02.004.

    LI T H, YAN C. A new method of hole-point search in grid embedding technique [J]. Acta Aerodynamica Sinica, 2001, 19(2): 156–160. DOI: 10.3969/j.issn.0258-1825.2001.02.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (574) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return