Volume 41 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, DU Chengxin, DU Zhonghua, GAO Guangfa. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion And Shock Waves, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134
Citation: YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, DU Chengxin, DU Zhonghua, GAO Guangfa. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion And Shock Waves, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134

Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration

doi: 10.11883/bzycj-2021-0134
  • Received Date: 2021-04-14
  • Rev Recd Date: 2021-06-08
  • Available Online: 2021-10-21
  • Publish Date: 2021-11-23
  • In order to investigate the ceramic fragmentation behavior of light ceramic composite armors in the process of anti-penetration, ballistic impact tests of ceramic/metal composite armors with different back cover and ceramic thicknesses using a penetrating projectile of 12.7 mm in diameter was carried out. The target was installed in a recycling bin, and the recovery rate of ceramic fragments was above 95%. By observing the macroscopic failure characteristics of the recovered target ceramics, the relationship between different thickness combinations of the ceramics and the main failure characteristics was analyzed. And through the multi-stage screening and weighing of the ceramic fragments, the size distribution law of the ceramic fragments with different thickness combinations was analyzed. The results show that the fracture cone of the ceramic was the main failure characteristic of the ceramic panel, and the macroscopic cracks mainly include radial cracks, ring cracks and conical cracks. The ceramic cone can be subdivided into a crushing zone composed of small powdered ceramic fragments caused by high compressive stress and a broken zone composed of large ceramic fragments caused by stress waves. The size distribution of the ceramic fragments in the ceramic cone after impact satisfies the Rosin-Rammler distribution model. With the increase of the back plate thickness, the half conical angle of the ceramic cone increases, which leads to increases in the overall volume of the ceramic cone and the proportion of the broken zone. The resulting ceramic fragments are mainly large size fragments, and the overall broken size in the ceramic cone increases. When the ceramic thickness increases, the half conical angle and the number of radial cracks remain basically unchanged, the proportion of the crushing zone in the ceramic cone increases, and the overall crushing size decreases.
  • loading
  • [1]
    LÓPEZ-PUENTE J, ARIAS A, ZAERA R, et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours: an experimental and numerical study [J]. International journal of impact engineering, 2005, 32(1−4): 321–336. DOI: 10.1016/j.ijimpeng.2005.07.014.
    [2]
    MA T, DU H, YAN Z L, et al. Mechanical property and ballistic performance of silicon carbide [J]. Key Engineering Materials, 2010, 434−435: 72–75. DOI: 10.4028/www.scientific.net/KEM.434-435.72.
    [3]
    CUI F, WU G, TIAN M, et al. Effect of ceramic properties and depth-of-penetration test parameters on the ballistic performance of armour ceramics [J]. Defence Science Journal, 2017, 67(3): 260. DOI: 10.14429/dsj.67.10664.
    [4]
    SAVIO S G, MADHU V, GOGIA A K. Ballistic performance of alumina and zirconia-toughened alumina against 7.62 armour piercing projectile [J]. Defence Science Journal, 2014, 64(5): 477. DOI: 10.14429/dsj.64.6745.
    [5]
    SAVIO S G, MADHU V. Ballistic performance evaluation of ceramic tiles with respect to projectile velocity against hard steel projectile using DOP test [J]. International Journal of Impact Engineering, 2018, 113: 161–167. DOI: 10.1016/j.ijimpeng.2017.11.020.
    [6]
    MEDVEDOVSKI E. Ballistic performance of armour ceramics: influence of design and structure: Part 1 [J]. Ceramics International, 2010, 36(7): 2103–2115. DOI: 10.1016/j.ceramint.2010.05.021.
    [7]
    MADHU V, RAMANJANEYULU K, BHAT T B, et al. An experimental study of penetration resistance of ceramic armour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1−4): 337–350. DOI: 10.1016/j.ijimpeng.2005.03.004.
    [8]
    NAIR N S, KUMAR C V S, NAIK N K. Ballistic impact performance of composite targets [J]. Materials & Design, 2013, 51: 833–846.
    [9]
    LIU W, CHEN Z, CHEN Z, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor [J]. Materials & Design, 2015, 87: 421–427.
    [10]
    王文俊. 陶瓷复合装甲防弹机理及防弹性能 [J]. 北京理工大学学报, 1997, 17(2): 147–150.

    WANG W J. Bulletproof mechanism and bulletproof performance of ceramic composite armor [J]. Transaction of Beijing Institute of Technology, 1997, 17(2): 147–150.
    [11]
    仲伟虹, 张佐光, 梁志勇. 轻质陶瓷/复合材料装甲抗弹机理的研究 [J]. 兵器材料科学与工程, 1998, 21(3): 19–22.

    ZHONG W H, ZHANG Z G, LIANG Z Y. Study on anti-ballistic mechanism of lightweight ceramic/composite armor [J]. Ordnance Material Science and Engineering, 1998, 21(3): 19–22.
    [12]
    HOGAN J D, FARBANIEC L, MALLICK D, et al. Fragmentation of an advanced ceramic under ballistic impact: mechanisms and microstructure [J]. International journal of impact engineering, 2017, 102: 47–54. DOI: 10.1016/j.ijimpeng.2016.12.008.
    [13]
    SAVIO S G, RAMANJANEYULU K, MADHU V, et al. An experimental study on ballistic performance of boron carbide tiles [J]. International Journal of Impact Engineering, 2011, 38(7): 535–541. DOI: 10.1016/j.ijimpeng.2011.01.006.
    [14]
    AKELLA K, NAIK N K. Composite armour: a review [J]. Journal of the Indian Institute of Science, 2015, 95(3): 297–312. DOI: http://journal.iisc.ernet.in/index.php/iisc/article/view/4574/0.
    [15]
    侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究 [J]. 兵工学报, 2013, 34(1): 105–114.

    HOU H L, ZHU X, LI W. Investigation on bullet proof mechanism of light ceramic/steel composite armor [J]. Acta Armamentarii, 2013, 34(1): 105–114.
    [16]
    蒋志刚, 曾首义, 申志强. 轻型陶瓷复合装甲结构研究进展 [J]. 兵工学报, 2010, 31(5): 603–610.

    JIANG Z G, ZENG S Y, SHEN Z Q. Research progress on lightweight ceramic composite armor structure [J]. Acta Armamentarii, 2010, 31(5): 603–610.
    [17]
    蒋志刚, 谭清华, 曾首义, 等. 陶瓷/金属复合靶板优化设计 [J]. 弹道学报, 2006(2): 69–71. DOI: 10.3969/j.issn.1004-499X.2006.02.017.

    JIANG Z G, TAN Q H, ZENG S Y, et al. Optimization of ceramic/metal composite targets [J]. Journal of Ballistics, 2006(2): 69–71. DOI: 10.3969/j.issn.1004-499X.2006.02.017.
    [18]
    CAO J, LAI J, ZHOU J, et al. Experiments and simulations of the ballistic response of ceramic composite armors [J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2783–2793. DOI: 10.1007/s12206-020-0611-8.
    [19]
    JIUSTI J, KAMMER E H, NECKEL L, et al. Ballistic performance of Al2O3 mosaic armors with gap-filling materials [J]. Ceramics International, 2017, 43(2): 2697–2704. DOI: 10.1016/j.ceramint.2016.11.087.
    [20]
    GOEL R, KULKARNI M D, PANDYA K S, et al. Stress wave micro–macro attenuation in ceramic plates made of tiles during ballistic impact [J]. International Journal of Mechanical Sciences, 2014, 83: 30–37. DOI: 10.1016/j.ijmecsci.2014.03.020.
    [21]
    MIRKHALAF M, SUNESARA A, ASHRAFI B, et al. Toughness by segmentation: Fabrication, testing and micromechanics of architectured ceramic panels for impact applications [J]. International Journal of Solids and Structures, 2019, 158: 52–65. DOI: 10.1016/j.ijsolstr.2018.08.025.
    [22]
    SHOCKEY D A, MARCHAND A H, SKAGGS S R, et al. Failure phenomenology of confined ceramic targets and impacting rods [J]. International Journal of Impact Engineering, 1990, 9(3): 263–275. DOI: 10.1016/0734-743X(90)90002-D.
    [23]
    WHITWORTH M B, HUNTLEY J M, FIELD J E. High-speed photography of high-resolution moire patterns [C]// 19th Intl Congress on High-Speed Photography and Photonics. International Society for Optics and Photonics, 1991, 1358: 677−682. DOI: 10.1117/12.23951.
    [24]
    TRACY C, SLAVIN M, VIECHNICKI D. Ceramic fracture during ballistic impact [J]. Fractography of Glasses and Ceramics Westerville, 1988, 22(1): 295–306.
    [25]
    余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响[J/OL]. 北京理工大学学报, 2021(8): 1−8. DOI: 10.15918/j.tbit1001-0645.2020.107.

    YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J/OL]. Transaction of Beijing Institute of Technology, 2021(8): 1−8. DOI: 10.15918/j.tbit1001-0645.2020.107.
    [26]
    MEYER JR H W, ABELN T, BINGERT S, et al. Crack behavior of ballistically impacted ceramic [J]. AIP Conference Proceedings, 2000, 505(1): 1109−1112. DOI: 10.1063/1.1303659.
    [27]
    刘立胜, 张清杰. 冲击波在陶瓷与梯度材料界面上的传播特性 [J]. 武汉理工大学学报, 2003(8): 1–4. DOI: 10.3321/j.issn:1671-4431.2003.08.001.

    LIU L S, ZHANG Q J. Propagation characteristics of shock waves at the interface between ceramics and gradient materials [J]. Journal of Wuhan university of technology, 2003(8): 1–4. DOI: 10.3321/j.issn:1671-4431.2003.08.001.
    [28]
    GONZÁLEZ-TELLO P, CAMACHO F, VICARIA J M, et al. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis [J]. Powder Technology, 2008, 186(3): 278–281. DOI: 10.1016/j.powtec.2007.12.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (521) PDF downloads(139) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return