Citation: | WU Sisi, DONG Xinlong, YU Xinlu. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method[J]. Explosion And Shock Waves, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172 |
[1] |
TAYLOR G I. The fragmentation of tubular bombs [M]. Cambridge: Cambridge University Press, 1963.
|
[2] |
MEYERS M A. Dynamic behavior of materials [M]. New York: Wiley, 1994.
|
[3] |
TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at one end [J]. Mechanics of Fluids, Scientific Papers of GI Taylor, 1941, 2: 277–286.
|
[4] |
HOGGATT C R, RECHT R F. Fracture behavior of tubular bombs [J]. Journal of Applied Physics, 1968, 39(3): 1856–1862. DOI: 10.1063/1.1656442.
|
[5] |
SINGH M, SUNEJA H R, BOLA M S, et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering, 2002, 27(9): 939–954. DOI: 10.1016/S0734-743X(02)00002-7.
|
[6] |
胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107.
HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107.
|
[7] |
汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533.
TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533.
|
[8] |
汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
|
[9] |
胡八一, 董庆东, 韩长生, 等. 爆炸金属管的绝热剪切断裂宏观研究 [J]. 爆炸与冲击, 1992, 12(4): 319–325.
HU B Y, DONG Q D, HAN C S, et al. The macroscopic study of adiabatic shear fracture of metal tubes under explosive loading [J]. Explosion and Shock Waves, 1992, 12(4): 319–325.
|
[10] |
胡八一, 董庆东, 韩长生, 等. 内部爆轰加载下的钢管膨胀断裂研究 [J]. 爆炸与冲击, 1993, 13(1): 49–54.
HU B Y, DONG Q D, HAN C S, et al. Studies of expansion and fracture of explosive-filled steel cylinders [J]. Explosion and Shock Waves, 1993, 13(1): 49–54.
|
[11] |
ZHANG Z B, HUANG F L, CAO Y, et al. A fragments mass distribution scaling relations for fragmenting shells with variable thickness subjected to internal explosive loading [J]. International Journal of Impact Engineering, 2018, 120: 79–94. DOI: 10.1016/j.ijimpeng.2018.05.013.
|
[12] |
罗渝松, 李伟兵, 陈志闯, 等. 内爆加载下金属柱壳的冻结回收方法 [J]. 爆炸与冲击, 2020, 40(10): 104101. DOI: 10.11883/bzycj-2020-0041.
LUO Y S, LI W B, CHEN Z C, et al. A freezing recovery method for metallic cylinder shells under internal explosive loading [J]. Explosion and Shock Waves, 2020, 40(10): 104101. DOI: 10.11883/bzycj-2020-0041.
|
[13] |
GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
|
[14] |
潘顺吉, 俞鑫炉, 董新龙. 不同载荷下TA2钛合金柱壳爆炸碎裂的实验研究 [J]. 高压物理学报, 2017, 31(4): 382–388. DOI: 10.11858/gywlxb.2017.04.005.
PAN S J, YU X L, DONG X L. Experimental study of fragmentation behavior of exploded TA2 alloy cylinderswith varied charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 382–388. DOI: 10.11858/gywlxb.2017.04.005.
|
[15] |
张世文, 金山, 刘仓理. 含缺陷厚壁圆管爆轰膨胀断裂的数值模拟 [J]. 应用力学学报, 2010, 27(3): 622–625.
ZHANG S W, JIN S, LIU C L. Simulation of the dynamic expanding process of thick-walled cylinder with defects [J]. Chinese Journal of Applied Mechanics, 2010, 27(3): 622–625.
|
[16] |
金山, 张世文, 龙建华. 缺陷对圆管膨胀断裂影响的实验研究 [J]. 高压物理学报, 2011, 25(2): 188–192. DOI: 10.11858/gywlxb.2011.02.017.
JIN S, ZHANG S W, LONG J H. Experimental study on the influences of defects on expanding fracture of a metal cylinder [J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 188–192. DOI: 10.11858/gywlxb.2011.02.017.
|
[17] |
俞鑫炉, 董新龙, 潘顺吉. 不同爆炸载荷下TA2钛合金圆管膨胀破坏过程 [J]. 爆炸与冲击, 2018, 38(1): 148–154. DOI: 10.11883/bzycj-2017-0014.
YU X L, DONG X L, PAN S J. Fracture behaviors of explosively driven TA2 alloy cylinders under different loadings [J]. Explosion and Shock Waves, 2018, 38(1): 148–154. DOI: 10.11883/bzycj-2017-0014.
|
[18] |
LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior ofan explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
|
[19] |
LIU G R, LIU M B, LI S. Smoothed particle hydrodynamics -a meshfree method [M]. NM (United States): World Scientific, 2004.
|
[20] |
REMINGTON T P, OWEN J M, NAKAMURA A M, et al. Numerical simulations of laboratory-scale, hypervelocity-impact experiments for asteroid-deflection code validation [J]. Earth and Space Science, 2020, 7(4): e2018EA000474. DOI: 10.1029/2018EA000474.
|
[21] |
JANKOWIAK T, ŁODYGOWSKI T. Smoothed particle hydrodynamics versus finite element method for blast impact [J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(1): 111–121. DOI: 10.2478/bpasts-2013-0009.
|
[22] |
KONG X S, WU W G, LI J, et al. A numerical investigation on explosive fragmentation of metal casing using smoothed particle hydrodynamic method [J]. Materials & Design, 2013, 51: 729–741. DOI: 10.1016/j.matdes.2013.04.041.
|
[23] |
任国武, 郭昭亮, 张世文, 等. 金属柱壳膨胀断裂的实验与数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 895–900. DOI: 10.11883/1001-1455(2015)06-0895-06.
REN G W, GUO Z L, ZHANG S W, et al. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell [J]. Explosion and Shock Waves, 2015, 35(6): 895–900. DOI: 10.11883/1001-1455(2015)06-0895-06.
|
[24] |
王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.
|
[25] |
胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192.
HU C M, HE H L, HU S S. A study on dynamic mechancial behaviors of 45 steel [J]. Explosion and Shock Waves, 2003, 23(2): 188–192.
|
[26] |
孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.
|
[27] |
郑柯, 董新龙. 20钢柱壳外爆拉-剪切型断裂研究 [J]. 兵器材料科学与工程, 2018, 41(3): 61–64. DOI: 10.14024/j.cnki.1004-244x.20180428.005.
ZHENG K, DONG X L. Tensile-shear failure of 20 steel cylindrical shells subjected to explosive loading [J]. Ordnance Material Science and Engineering, 2018, 41(3): 61–64. DOI: 10.14024/j.cnki.1004-244x.20180428.005.
|
[1] | DU Ye, ZHOU Weizhi, HUANG Qiuan, LI Qiang. Research on an equivalent simulation experimental technology for overloading environmental forces of charge[J]. Explosion And Shock Waves, 2024, 44(7): 074101. doi: 10.11883/bzycj-2024-0048 |
[2] | GU Zhuowei, ZHOU Zhongyu, ZHAO Xincai, LU Yu, ZHANG Xuping, CHENG Cheng, ZHAO Juan, CHEN Guanghua, WU Gang, TAN Fuli, ZHAO Jianheng, SUN Chengwei. Experiment study of cascades explosive implosion magnetic flux generator[J]. Explosion And Shock Waves, 2024, 44(2): 021201. doi: 10.11883/bzycj-2023-0183 |
[3] | CHANG Lihua, WEN Weifeng, RAN Maojie, HUANG Wenbin, WANG Xu, HE Hui, GAO Peng. Study on ultra-high speed photoelectric framing photography of the multi-point initiation of explosive[J]. Explosion And Shock Waves, 2022, 42(4): 044101. doi: 10.11883/bzycj-2021-0201 |
[4] | SHU Junxiang, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives[J]. Explosion And Shock Waves, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305 |
[5] | LUO Binqiang, ZHANG Xuping, HAO Long, MO Jianjun, WANG Guiji, SONG Zhenfei, TAN Fuli, WANG Xiang, ZHAO Jianheng. Advances on the techniques of ultrahigh-velocity launch above 7 km/s[J]. Explosion And Shock Waves, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307 |
[6] | JIANG Jianwei, PENG Jiacheng. Research advances in circumferential multiple linear explosively-formed projectile technology[J]. Explosion And Shock Waves, 2021, 41(10): 101102. doi: 10.11883/bzycj-2021-0017 |
[7] | ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449 |
[8] | ZHANG Jijun, ZHANG Dongliang, ZHAO Jianwei, ZHANG Baoguo, CUI Yunxiao. Study on measurement of gas temperature and pressure after explosion in closed cavity at small-scaled distance[J]. Explosion And Shock Waves, 2019, 39(2): 024103. doi: 10.11883/bzycj-2018-0039 |
[9] | Yu Yu-ying, Xi Feng, Dai Cheng-da, Cai Ling-cang, Tan Hua, Li Xue-mei. Measurement of strength in a Zr-based bulk metallic glass under dynamic high-pressure loading[J]. Explosion And Shock Waves, 2014, 34(1): 1-5. |
[10] | HUANG Lian, ZHANG Jin, ZHA Chang-song, CHEN Xian-gang, WANG Hui-juan. Passive-shock-isolationtechnologiesbased onAlfoamenergyabsorbers[J]. Explosion And Shock Waves, 2011, 31(6): 606-611. doi: 10.11883/1001-1455(2011)06-0606-06 |
[11] | ZHANG Xian-feng, CHEN Hui-wu, HE Yong, HUANG Zheng-xiang. Study on a tandem shaped charge technique to reinforce concrete[J]. Explosion And Shock Waves, 2008, 28(3): 207-302. doi: 10.11883/1001-1455(2008)03-0207-06 |
[12] | DENG Xiang-yang, LI Ze-ren, PENG Qi-xian, LIU Jun, WANG Gui-ji, TANG Xiao-song. Two-path optical current sensor for measuring high pulse current[J]. Explosion And Shock Waves, 2007, 27(1): 45-49. doi: 10.11883/1001-1455(2007)01-0045-05 |
[13] | ZHAO Ji-bo, ZHAO Feng, TAN Duo-wang, SUN Yong-qiang, WANG Guang-jun, GONG Yan-qing, JI Zong-de. Research on load technique for rocket sled[J]. Explosion And Shock Waves, 2007, 27(6): 572-576. doi: 10.11883/1001-1455(2007)06-0572-05 |
[14] | ZHAO Hui-ying, SHEN Zhao-wu, LIU Tian-sheng. On the integrated technology of reactive armors with composite ceramic armors[J]. Explosion And Shock Waves, 2006, 26(1): 21-26. doi: 10.11883/1001-1455(2006)01-0021-06 |
[15] | GUI Yu-lin, SUN Cheng-wei, LI Qiang, ZHANG Guang-sheng. Experimental studies on dynamic tension of metal ring by electromagnetic loading[J]. Explosion And Shock Waves, 2006, 26(6): 481-485. doi: 10.11883/1001-1455(2006)06-0481-05 |
[16] | YU Yu-ying, TAN Hua, HU Jian-bo, DAI Cheng-da, CHEN Da-nian. Measurements of sound velocities in shock-compressed tantalum and LY12 Al[J]. Explosion And Shock Waves, 2006, 26(6): 486-491. doi: 10.11883/1001-1455(2006)06-0486-06 |