Citation: | ZHAO Zhujie, HOU Hailiang, LI Dian, WANG Ke, YAO Menglei. In-plane dynamic mechanical properties of partially liquid filled multicell structure[J]. Explosion And Shock Waves, 2022, 42(3): 033103. doi: 10.11883/bzycj-2021-0173 |
[1] |
PAN J, FANG H, XU M C, et al. Dynamic performance of a sandwich structure with honeycomb composite core for bridge pier protection from vehicle impact [J]. Thin-Walled Structures, 2020, 157: 107010. DOI: 10.1016/j.tws.2020.107010.
|
[2] |
ZHOU H Y, ZHANG X J, WANG X J, et al. Response of foam concrete-filled aluminum honeycombs subject to quasi-static and dynamic compression [J]. Composite Structures, 2020, 239: 112025. DOI: 10.1016/j.compstruct.2020.112025.
|
[3] |
YIN F, CAO W L, XUE S D, et al. Behavior of multicell concrete-filled steel tube columns under eccentric loading [J]. Journal of Constructional Steel Research, 2020, 172: 106218. DOI: 10.1016/j.jcsr.2020.106218.
|
[4] |
KOCH S, DUVIGNEAU F, ORSZULIK R, et al. Partial filling of a honeycomb structure by granular materials for vibration and noise reduction [J]. Journal of Sound and Vibration, 2017, 393: 30–40. DOI: 10.1016/j.jsv.2016.11.024.
|
[5] |
XIE S C, YANG S C, YANG C X, et al. Sound absorption performance of a filled honeycomb composite structure [J]. Applied Acoustics, 2020, 162: 107202. DOI: 10.1016/j.apacoust.2019.107202.
|
[6] |
XIE B, CHENG W L, XU Z M. Studies on the effect of shape-stabilized PCM filled aluminum honeycomb composite material on thermal control [J]. International Journal of Heat and Mass Transfer, 2015, 91: 135–143. DOI: 10.1016/j.ijheatmasstransfer.2015.07.108.
|
[7] |
KUMAR S J A, KUMAR S J A. Low-velocity impact damage and energy absorption characteristics of stiffened syntactic foam core sandwich composites [J]. Construction and Building Materials, 2020, 246: 118412. DOI: 10.1016/j.conbuildmat.2020.118412.
|
[8] |
杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.
YANG D Q, MA T, ZHANG G L. A novel auxetic broadside defensive structure for naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.
|
[9] |
GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.
|
[10] |
QI D X, LU Q Y, HE C W, et al. Impact energy absorption of functionally graded chiral honeycomb structures [J]. Extreme Mechanics Letters, 2019, 32: 100568. DOI: 10.1016/j.eml.2019.100568.
|
[11] |
任毅如, 蒋宏勇, 金其多, 等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性 [J]. 航空学报, 2021, 42(3): 223978. DOI: 10.7527/S1000-6893.2020.23978.
REN Y R, JIANG H Y, JIN Q D, et al. Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson’s ratio [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 223978. DOI: 10.7527/S1000-6893.2020.23978.
|
[12] |
ZHONG R C, FU M H, CHEN X, et al. A novel three-dimensional mechanical metamaterial with compression-torsion properties [J]. Composite Structures, 2019, 226: 111232. DOI: 10.1016/j.compstruct.2019.111232.
|
[13] |
MONTGOMERY S M, KUANG X, ARMSTRONG C D, et al. Recent advances in additive manufacturing of active mechanical metamaterials [J]. Current Opinion in Solid State and Materials Science, 2020, 24(5): 100869. DOI: 10.1016/j.cossms.2020.100869.
|
[14] |
ZHOU H Y, JIA K C, WANG X J, et al. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs [J]. Thin-Walled Structures, 2020, 154: 106898. DOI: 10.1016/j.tws.2020.106898.
|
[15] |
XUE T, MENG J G, JIN Z H. Study on the performance of honeycomb ceramics carrier based on the ordinary paper [J]. Materials Science and Engineering: A, 2011, 528(29/30): 8512–8516. DOI: 10.1016/j.msea.2011.07.051.
|
[16] |
CHEN X J, YU G C, WANG Z X, et al. Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs [J]. Composite Structures, 2021, 255: 112984. DOI: 10.1016/j.compstruct.2020.112984.
|
[17] |
WU H H, SUI L, ZHOU T H, et al. Estimation of lateral stiffness for gypsum-filled cold-formed steel shear walls [J]. Structures, 2021, 32: 28–37. DOI: 10.1016/j.istruc.2021.02.067.
|
[18] |
MOHAMADI Y, AHMADI H, RAZMKHAH O, et al. Axial crushing responses of aluminum honeycomb structures filled with elastomeric polyurethane foam [J]. Thin-Walled Structures, 2021, 164: 107785. DOI: 10.1016/j.tws.2021.107785.
|
[19] |
LIU Q, FU J, WANG J S, et al. Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam [J]. Composites Part B: Engineering, 2017, 130: 236–247. DOI: 10.1016/j.compositesb.2017.07.041.
|
[20] |
BAI J W, LIAO X, HUANG E B, et al. Control of the cell structure of microcellular silicone rubber/nanographite foam for enhanced mechanical performance [J]. Materials & Design, 2017, 133: 288–298. DOI: 10.1016/j.matdes.2017.07.064.
|
[21] |
GAO S Z, LI D, HOU H L, et al. Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles [J]. Thin-Walled Structures, 2020, 157: 107119. DOI: 10.1016/j.tws.2020.107119.
|
[22] |
何强, 马大为, 张震东. 含随机填充孔圆形蜂窝结构的面内冲击性能 [J]. 爆炸与冲击, 2015, 35(3): 401–408. DOI: 10.11883/1001-1455-(2015)03-0401-08.
HE Q, MA D W, ZHANG Z D. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions [J]. Explosion and Shock Waves, 2015, 35(3): 401–408. DOI: 10.11883/1001-1455-(2015)03-0401-08.
|
[23] |
CHEN C, LU T J, FLECK N A. Effect of inclusions and holes on the stiffness and strength of honeycombs [J]. International Journal of Mechanical Sciences, 2001, 43(2): 487–504. DOI: 10.1016/S0020-7403(99)00122-8.
|
[24] |
PRAKASH O, BICHEBOIS P, BRECHET Y, et al. A note on the deformation behaviour of two-dimensional model cellular structures [J]. Philosophical Magazine A, 1996, 73(3): 739–751. DOI: 10.1080/01418619608242994.
|
[25] |
NAKAMOTO H, ADACHI T, ARAKI W. In-plane impact behavior of honeycomb structures filled with linearly arranged inclusions [J]. International Journal of Impact Engineering, 2009, 36(8): 1019–1026. DOI: 10.1016/j.ijimpeng.2009.01.004.
|
[26] |
NAKAMOTO H, ADACHI T, ARAKI W. In-plane impact behavior of honeycomb structures randomly filled with rigid inclusions [J]. International Journal of Impact Engineering, 2009, 36(1): 73–80. DOI: 10.1016/j.ijimpeng.2008.04.004.
|
[27] |
闫晓刚, 张勇, 林继铭, 等. 新颖圆形多胞复合填充结构的耐撞性 [J]. 复合材料学报, 2018, 35(8): 2166–2176. DOI: 10.13801/j.cnki.fhclxb.20170906.001.
YAN X G, ZHANG Y, LIN J M, et al. Crashworthiness for novel circular multi-cell composite filling structures [J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2166–2176. DOI: 10.13801/j.cnki.fhclxb.20170906.001.
|
[28] |
BAYKASOĞLU A, BAYKASOĞLU C, CETIN E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes [J]. Thin-Walled Structures, 2020, 149: 106630. DOI: 10.1016/j.tws.2020.106630.
|
[29] |
KIM D H, KIM S W. Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis [J]. Composite Structures, 2019, 210: 676–686. DOI: 10.1016/j.compstruct.2018.11.086.
|
[30] |
金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
|
[31] |
GODOY L A. Buckling of vertical oil storage steel tanks: review of static buckling studies [J]. Thin-Walled Structures, 2016, 103: 1–21. DOI: 10.1016/j.tws.2016.01.026.
|
[32] |
ZHANG Y H, WU X D, LU G Y, et al. Experimental and numerical studies on dynamic responses of liquid-filled hemispherical shell under axial impact [J]. Thin-Walled Structures, 2018, 131: 606–618. DOI: 10.1016/j.tws.2018.07.003.
|
[33] |
CHEN Y, HUANG W, CONSTANTINI S. Blast shock wave mitigation using the hydraulic energy redirection and release technology [J]. PLoS One, 2012, 7(6): e39353. DOI: 10.1371/journal.pone.0039353.
|
[34] |
金键, 侯海量, 吴梵, 等. 战斗部近炸下防护液舱破坏机理分析 [J]. 国防科技大学学报, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024.
JIN J, HOU H L, WU F, et al. Analysis of failure mechanism on protective liquid cabin under warhead close explosion [J]. Journal of National University of Defense Technology, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024.
|
[35] |
JIN J, HOU H L, CHEN P Y, et al. Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments [J]. International Journal of Impact Engineering, 2019, 130: 19–26. DOI: 10.1016/j.ijimpeng.2019.04.001.
|