Citation: | WANG Xiaodong, YU Yilei, JIANG Zhaoxiu, MA Minghui, GAO Guangfa. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities[J]. Explosion And Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181 |
[1] |
SAVIO S G, SENTHIL P, SINGH V, et al. An experimental study on the projectile defeat mechanism of hard steel projectile against boron carbide tiles [J]. International Journal of Impact Engineering, 2015, 86: 157–166. DOI: 10.1016/j.ijimpeng.2015.07.011.
|
[2] |
DI BENEDETTO G, MATTEIS P, SCAVINO G. Impact behavior and ballistic efficiency of armor-piercing projectiles with tool steel cores [J]. International Journal of Impact Engineering, 2018, 115: 10–18. DOI: 10.1016/j.ijimpeng.2017.12.021.
|
[3] |
RAHBEK D B, JOHNSEN B B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles [J]. International Journal of Impact Engineering, 2019, 133: 103332. DOI: 10.1016/j.ijimpeng.2019.103332.
|
[4] |
ASAHI KAWASHIMA, H K H K. Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing [J]. Materials Transactions, 2005(7): 1725–1732.
|
[5] |
GRADY D E, KIPP M E. Impact failure and fragmentation properties of metals [J]. International Journal of Impact Engineering, 1997, 20(1): 293–308. DOI: 10.1016/S0734-743X(97)87502-1.
|
[6] |
PIEKUTOWSKI A J. Effects of scale on debris cloud properties [J]. International Journal of Impact Engineering, 1997, 20(6): 639–650.
|
[7] |
GRADY D E. Dissipation in adiabatic shear bands [J]. Mechanics of Materials, 1994, 17(2): 289–293.
|
[8] |
MA G, ZHANG Y, ZHOU W, et al. The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid [J]. International Journal of Impact Engineering, 2018, 113: 132–143. DOI: 10.1016/j.ijimpeng.2017.11.016.
|
[9] |
WANG C T, HE Y, JI C, et al. Dynamic fragmentation of a Zr-based metallic glass under various impact velocities [J]. Journal of Materials Science, 2021, 56(4): 2900–2911. DOI: 10.1007/s10853-020-05495-5.
|
[10] |
SHAN J, XU S, LIU Y, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. DOI: 10.1016/j.powtec.2018.02.009.
|
[11] |
SARVA S, NEMAT-NASSER S, MCGEE J, et al. The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles [J]. International Journal of Impact Engineering, 2007, 34(2): 277–302. DOI: 10.1016/j.ijimpeng.2005.07.006.
|
[12] |
CHI R, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84: 159–170. DOI: 10.1016/j.ijimpeng.2015.05.011.
|
[13] |
LYNCH N J, BLESS S J, CULLIS I G, et al. The influence of confinement on the penetration of ceramic targets by KE projectiles at 1.8 and 2.6 km/s [J]. International Journal of Impact Engineering, 2006, 33(1): 390–401. DOI: 10.1016/j.ijimpeng.2006.09.029.
|
[14] |
LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 259–275. DOI: 10.1016/S0734-743X(99)00152-9.
|
[15] |
SAVIO S G, RAMANJANEYULU K, MADHU V, et al. An experimental study on ballistic performance of boron carbide tiles [J]. International Journal of Impact Engineering, 2011, 38(7): 535–541. DOI: 10.1016/j.ijimpeng.2011.01.006.
|
[16] |
GRADY D E. Fragmentation of rings and shells[M]. Berlin: Springer, 2006: 2−9.
|
[17] |
GRADY D E. Fragment size distributions from the dynamic fragmentation of brittle solids [J]. International Journal of Impact Engineering, 2008, 35(12): 1557–1562. DOI: 10.1016/j.ijimpeng.2008.07.042.
|
[18] |
张青艳. 脆性材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2019: 26−46.
ZHANG Q Y. Fragmentations of brittle materials under quasi-static and dynamic compression[D]. Ningbo: Ningbo University, 2019: 26−46.
|
[1] | CHENG Yuehua, WU Hao, CEN Guohua, ZHANG Yu. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads[J]. Explosion And Shock Waves, 2025, 45(1): 013301. doi: 10.11883/bzycj-2024-0061 |
[2] | YANG Shigang, LUO Ze, XU Jiheng, FANG Qin, YANG Ya, XU Guolin, TANG Junjie. Failure modes of concrete structure under penetration and explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003 |
[3] | MA Minghui, WU Yiding, WANG Xiaodong, YU Yilei, WANG Botong, GAO Guangfa. Penetration resistance of ceramic/UHMWPE composite structures with porous titanium alloy sandwich layer[J]. Explosion And Shock Waves, 2024, 44(4): 041001. doi: 10.11883/bzycj-2023-0375 |
[4] | HONG Zhijie, YANG Yaozong, KONG Xiangzhen, FANG Qin. Practical engineering calculation models for rigid projectile penetrating and perforating into concrete target[J]. Explosion And Shock Waves, 2023, 43(8): 083302. doi: 10.11883/bzycj-2022-0482 |
[5] | WEN Lei, FENG Wenjie, LI Mingye, KOU Zilong, WANG Liang, YU Junhong. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks[J]. Explosion And Shock Waves, 2023, 43(11): 113103. doi: 10.11883/bzycj-2023-0061 |
[6] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[7] | WANG Kailei, LI Mingjing, DONG Leiting. Simulation on penetration of a 12.7-mm projectile into steel targets with different strengths[J]. Explosion And Shock Waves, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336 |
[8] | LIU Zide, WANG Guanghua, DONG Fangdong, CUI Bin. Ballistic characteristics of a 9 mm pistol bullet penetrating medium density fiberboard[J]. Explosion And Shock Waves, 2021, 41(5): 053304. doi: 10.11883/bzycj-2020-0148 |
[9] | TAN Mengting, ZHANG Xianfeng, BAO Kuo, WEI Haiyang, HAN Guoqing. Characteristics of interface defeat and penetration during the impact between a ceramic armor and a long-rod projectile[J]. Explosion And Shock Waves, 2021, 41(3): 031406. doi: 10.11883/bzycj-2020-0338 |
[10] | WU Sisi, DONG Xinlong, YU Xinlu. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method[J]. Explosion And Shock Waves, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172 |
[11] | YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, DU Chengxin, DU Zhonghua, GAO Guangfa. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion And Shock Waves, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134 |
[12] | LIU Yongyou, YANG Huawei, ZHANG Jie, WANG Zhiyong, WANG Zhihua. A resistance model for a rigid flat projectile penetrating a reinforced concrete target[J]. Explosion And Shock Waves, 2020, 40(3): 033301. doi: 10.11883/bzycj-2018-0389 |
[13] | WANG Weizhan, ZHAO Taiyong, FENG Shunshan, YANG Baoliang, LI Xiaojun, CHEN Zhigang. Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor[J]. Explosion And Shock Waves, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425 |
[14] | Li Ruiyu, Sun Yuxin, Zhou Ling, Sun Qiran, Zhao Yayun, Feng Jiangtuo. Influence of heat transfer on long-rod projectiles penetrating into ceramic targets[J]. Explosion And Shock Waves, 2017, 37(2): 332-338. doi: 10.11883/1001-1455(2017)02-0332-07 |
[15] | Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun. Experimental study on penetration-resistance characteristics of honeycomb shelter[J]. Explosion And Shock Waves, 2016, 36(2): 253-258. doi: 10.11883/1001-1455(2016)02-0253-06 |
[16] | Wang Yan, Ma Tie-hua, Xu Peng, Fan Jin-biao. Identification of penetration layers based on Choi-Williams distribution[J]. Explosion And Shock Waves, 2015, 35(5): 758-762. doi: 10.11883/1001-1455(2015)05-0758-05 |
[17] | ZHAO Jun, CHEN Xiao-wei, JIN Feng-nian, XU Ying. Cartridgedesignofahigh-speedprojectileconsideringmassabrasion[J]. Explosion And Shock Waves, 2011, 31(5): 481-489. doi: 10.11883/1001-1455(2011)05-0481-09 |
[18] | JIANG Dong, LI Yong-chi, YU Shao-juan, DENG Shi-chun. PenetrationofconfinedAD95ceramiccompositetargets bytungstenlongrods[J]. Explosion And Shock Waves, 2010, 30(1): 91-95. doi: 10.11883/1001-1455(2010)01-0091-05 |
[20] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |
1. | 赵永青,余毅磊,高光发,王永刚,蒋招绣. 超高强钢弹侵彻陶瓷复合靶数值模拟研究. 宁波大学学报(理工版). 2025(01): 54-62 . ![]() | |
2. | 王伯通,褚庆国,武一丁,王晓东,余毅磊,周玄,高光发. 不同陶瓷厚度复合靶的抗侵彻行为研究. 弹道学报. 2024(04): 30-38 . ![]() | |
3. | 武一丁,高光发,王晓东. 不同速度下B_4C陶瓷/铝合金轻型复合靶板抗侵彻行为研究. 南京理工大学学报. 2023(04): 503-513 . ![]() | |
4. | 武一丁,王晓东,余毅磊,马铭辉,陆文成,高光发. 纤维背板结构对B_4C陶瓷复合装甲抗侵彻破碎特性的影响. 爆炸与冲击. 2023(09): 181-193 . ![]() | |
5. | 马铭辉,武一丁,王晓东,余毅磊,周玄,高光发,褚庆国. Kevlar纤维及碳纤维背衬下SiC陶瓷和弹丸的破碎特性. 高压物理学报. 2023(06): 120-128 . ![]() | |
6. | 王明扬,郑宇轩,李天鹏,程春,王远超. 分段弹芯对陶瓷/钢复合装甲的侵彻行为. 兵工学报. 2023(12): 3667-3675 . ![]() |