Volume 42 Issue 4
May  2022
Turn off MathJax
Article Contents
ZHANG Yong. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure[J]. Explosion And Shock Waves, 2022, 42(4): 045101. doi: 10.11883/bzycj-2021-0182
Citation: ZHANG Yong. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure[J]. Explosion And Shock Waves, 2022, 42(4): 045101. doi: 10.11883/bzycj-2021-0182

Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure

doi: 10.11883/bzycj-2021-0182
  • Received Date: 2021-05-12
  • Rev Recd Date: 2021-06-02
  • Available Online: 2022-03-09
  • Publish Date: 2022-05-09
  • Based on the contact explosion experiments, the absorption performance of the polyurethane foam aluminum and concrete composite structure was analyzed, and the relevant numerical simulation was analyzed and compared. First, polyurethane foam aluminum composite material was made through the pressurized equipment homemade. The hole of the aluminum foam was filled with polyurethane foam through pressure. Then the polyurethane foam aluminum composite material plates and concrete plates were fixed on the explosion experiment apparatus with high sensitivity of strain sensors, acceleration sensors and displacement sensors under the structure or surface. The experiments measured 5 groups of contact explosion experiment data under different structure combinations. Based on the change variables to the experiments, the calculation of numerical simulation experiments were supplemented to make up for other explosion experiments not involved due to lack of experiment conditions. The smooth particle hydrodynamic method (SPH) was used in the numerical simulation to avoid using Lagrange algorithm in explosion shock damage under the large deformation problem of mesh distortion problem. This method can more accurately reflect the explosion impact damage effect. Three kinds of calculation models were used to the numerical simulation. The main research was that the whole antiknock and absorption performance was changed with energy absorption layer thickness change and the number of the structure layer change of the composite structure. Results through explosion experiments and numerical analysis show that absorption performance of polyurethane foam aluminum is superior to that of aluminum foam, energy absorption layer thickness has a great influence on energy absorption effect, and the absorption performance of multilayer structure of polyurethane foam aluminum has no obvious improvement contrasting with the absorption performance of single layer structure with the same thickness. The multilayer structure of polyurethane foam aluminum also increases the difficulty of construction. Under certain conditions, with the reasonable energy absorption layer thickness of the protective structure there is one best combination to ensure that the compound layer thickness of excellent antiknock performance. Finally draw the conclusions: the explosion shock wave energy absorption performance can be improved about 25% by polyurethane foam aluminum than by aluminum foam. The thickness of the polyurethane foam aluminum significantly affects on the energy absorption antiknock performance. The energy absorption performance can improve 50% with increasing the 100% thickness of polyurethane foam aluminum. Effect of changing the antiknock structural energy absorption layers combination is not obvious.
  • loading
  • [1]
    SHEN J H, LU G X, WANG Z H, et al. Experiments on curved sandwich panels under blast loading [J]. International Journal of Impact Engineering, 2010, 37(9): 960–970. DOI: 10.1016/j.ijimpeng.2010.03.002.
    [2]
    MERRETT R P, LANGDON G S, THEOBALD M D. The blast and impact loading of aluminium foam [J]. Materials & Design, 2012, 44: 311–319. DOI: 10.1016/j.matdes.2012.08.016.
    [3]
    YUN N R, SHIN D H, JI S W, et al. Experiments on blast protective systems using aluminum foam panels [J]. KSCE Journal of Civil Engineering, 2014, 18(7): 2153–2161. DOI: 10.1007/s12205-014-0092-3.
    [4]
    曾贵玉, 聂福德, 刘兰, 等. 聚氨酯原位结晶包覆HMX的研究 [J]. 含能材料, 2011, 19(2): 138–141. DOI: 10.3969/j.issn.1006-9941.2011.02.004.

    ZENG G Y, NIE F D, LIU L, et al. In-situ crystallization coating HMX by polyurethane [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 138–141. DOI: 10.3969/j.issn.1006-9941.2011.02.004.
    [5]
    朱长春, 翁汉元, 吕国会, 等. 国内外聚氨酯工业最新发展状况 [J]. 化学推进剂与高分子材料, 2012, 10(5): 1–20. DOI: 10.16572/j.issn1672-2191.2012.05.001.

    ZHU C C, WENG H Y, LYU G H, et al. The latest development status of polyurethane industry at home and abroad [J]. Chemical Propellants & Polymeric Materials, 2012, 10(5): 1–20. DOI: 10.16572/j.issn1672-2191.2012.05.001.
    [6]
    王冬梅, 夏绍灵, 张琳琪, 等. 聚氨酯/纳米复合材料的制备方法的研究进展 [J]. 高分子通报, 2011(3): 65–72. DOI: 10.14028/j.cnki.1003-3726.2011.03.015.

    WANG D M, XIA S L, ZHANG L Q, et al. Research progress in the Preparation methods of polyurethane/Nano-composite materials [J]. Polymer Bulletin, 2011(3): 65–72. DOI: 10.14028/j.cnki.1003-3726.2011.03.015.
    [7]
    USTA F, TÜRKMEN H S, SCARPA F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures [J]. Thin-Walled Structures, 2021, 163: 107738. DOI: 10.1016/J.TWS.2021.107738.
    [8]
    YÜKSEL E, GÜLLÜ A, ÖZKAYNAK H, et al. Experimental investigation and pseudoelastic truss model for in-plane behavior of corrugated sandwich panels with polyurethane foam core [J]. Structures, 2021, 29: 823–842. DOI: 10.1016/J.ISTRUC.2020.11.058.
    [9]
    隋顺彬, 康建功, 孙建虎. 泡沫铝在油气爆炸荷载作用下的吸能减冲击性能 [J]. 爆破, 2011, 28(2): 30–34. DOI: 10.3963/j.issn.1001-487X.2011.02.009.

    SUI S B, KANG J G, SUN J H. Energy absorption and vibration reduction performance of aluminum foam under fuel-air explosion loading [J]. Blasting, 2011, 28(2): 30–34. DOI: 10.3963/j.issn.1001-487X.2011.02.009.
    [10]
    张伟, 齐明思, 赵志芳, 等. 泡沫铝-聚氨酯复合材料制备及力学性能分析 [J]. 包装工程, 2017, 38(21): 35–40. DOI: 10.19554/j.cnki.1001-3563.2017.21.008.

    ZHANG W, QI M S, ZHAO Z F, et al. Preparation and mechanical property analysis of aluminum foam-polyurethane composites [J]. Packaging Engineering, 2017, 38(21): 35–40. DOI: 10.19554/j.cnki.1001-3563.2017.21.008.
    [11]
    谢卫红, 杜红涛, 李顺才. 泡沫铝与聚氨酯泡沫铝吸能特性对比 [J]. 沈阳建筑大学学报(自然科学版), 2011, 27(2): 307–311.

    XIE W H, DU H T, LI S C. Comparative study of energy absorption performance for open-cell aluminum and polyurethane foam aluminum [J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(2): 307–311.
    [12]
    谢卫红, 杜红涛, 李顺才. 聚氨酯泡沫铝复合材料动态力学实验 [J]. 复合材料学报, 2011, 28(3): 103–108. DOI: 10.13801/j.cnki.fhclxb.2011.03.030.

    XIE W H, DU H T, LI S C. Experimental study on dynamic mechanical performance of polyurethanealuminum foams composites [J]. Acta Materiae Compositae Sinica, 2011, 28(3): 103–108. DOI: 10.13801/j.cnki.fhclxb.2011.03.030.
    [13]
    张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究 [J]. 爆炸与冲击, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.

    ZHANG Y, CHEN L, CHEN R J, et al. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum [J]. Explosion and Shock waves, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.
    [14]
    YU R, LUO W, YUAN H, et al. Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson's ratio [J]. Thin-Walled Structures, 2020, 153: 106679. DOI: 10.1016/J.TWS.2020.106679.
    [15]
    张勇. 地面防护工程抗爆复合材料与结构研究 [D]. 江苏, 徐州: 中国矿业大学, 2014: 26, 99, 103.

    ZHANG Y. Research on the antiknock composite material and structure of ground defense engineering [D]. Xuzhou, Jiangsu: China University of Mining and Technology, 2014: 26; 99; 103.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (468) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return