Citation: | ZHONG Feixiang, ZHENG Ligang, MA Hongyan, DU Depeng, WANG Xi, PAN Rongkun. A study of explosion dynamics of a CH4/O2/CO2 premixed system[J]. Explosion And Shock Waves, 2022, 42(1): 012101. doi: 10.11883/bzycj-2021-0191 |
[1] |
SAANUM I, DITARANTO M. Experimental study of oxy-fuel combustion under gas turbine conditions [J]. Energy and Fuels, 2017, 31(4): 4445–4451. DOI: 10.1021/acs.energyfuels.6b03114.
|
[2] |
STANGER R, WALL T, SPÖRL R, et al. Oxyfuel combustion for CO2 capture in power plants [J]. International Journal of Greenhouse Gas Control, 2015, 40: 55–125. DOI: 10.1016/j.ijggc.2015.06.010.
|
[3] |
CHAKROUN N W, GHONIEM A F. High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO2 capture [J]. International Journal of Greenhouse Gas Control, 2015, 41: 163–173. DOI: 10.1016/j.ijggc.2015.06.025.
|
[4] |
LI B, SHI B, CHU Q, et al. Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition [J]. Energy, 2019, 168: 151–159. DOI: 10.1016/j.energy.2018.11.039.
|
[5] |
ABDELHAFEZ A, NEMITALLAH M A, RASHWAN S S, et al. Adiabatic flame temperature for controlling the macrostructures and stabilization modes of premixed methane flames in a model gas-turbine combustor [J]. Energy and Fuels, 2018, 32(7): 7868–7877. DOI: 10.1021/acs.energyfuels.8b01133.
|
[6] |
KUTNE P, KAPADIA B K, MEIER W, et al. Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor [J]. Proceedings of the Combustion Institute, 2011, 33(2): 3383–3390. DOI: 10.1016/j.proci.2010.07.008.
|
[7] |
LIU C Y, CHEN G, SIPÖCZ N, et al. Characteristics of oxy-fuel combustion in gas turbines [J]. Applied Energy, 2012, 89(1): 387–394. DOI: 10.1016/j.apenergy.2011.08.004.
|
[8] |
ZHANG Q S, CHEN G Y, DENG H X, et al. Experimental and numerical study of the effects of oxygen-enriched air on the laminar burning characteristics of biomass-derived syngas [J]. Fuel, 2021, 285: 119183. DOI: 10.1016/j.fuel.2020.119183.
|
[9] |
HU X Z, YU Q B, SUN N, et al. Effects of high concentrations of CO2 on the lower flammability limits of oxy-methane mixtures [J]. Energy and Fuels, 2016, 30(5): 4346–4352. DOI: 10.1021/acs.energyfuels.6b00492.
|
[10] |
HU X Z, YU Q B, LIU J X, et al. Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation [J]. Energy, 2014, 70: 626–634. DOI: 10.1016/j.energy.2014.04.029.
|
[11] |
DI BENEDETTO A, CAMMAROTA F, DI SARLI V, et al. Anomalous behavior during explosions of CH4 in oxygen-enriched air [J]. Combustion and Flame, 2011, 158(11): 2214–2219. DOI: 10.1016/j.combustflame.2011.03.015.
|
[12] |
DI BENEDETTO A, DI SARLI V, SALZANO E, et al. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures [J]. International Journal of Hydrogen Energy, 2009, 34(16): 6970–6978. DOI: 10.1016/j.ijhydene.2009.05.120.
|
[13] |
XIA Y, HASHIMOTO G, HADI K, et al. Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition [J]. Fuel, 2020, 268: 117383. DOI: 10.1016/j.fuel.2020.117383.
|
[14] |
CAI X, WANG J H, ZHANG W J, et al. Effects of oxygen enrichment on laminar burning velocities and Markstein lengths of CH4/O2/N2 flames at elevated pressures [J]. Fuel, 2016, 184: 466–473. DOI: 10.1016/j.fuel.2016.07.011.
|
[15] |
CHAN Y L, ZHU M M, ZHANG Z Z, et al. The effect of CO2 dilution on the laminar burning velocity of premixed methane/air flames [J]. Energy Procedia, 2015, 75: 3048–3053. DOI: 10.1016/j.egypro.2015.07.621.
|
[16] |
KHAN A R, ANBUSARAVANAN S, KALATHI L, et al. Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames [J]. Fuel, 2017, 196: 225–232. DOI: 10.1016/j.fuel.2017.01.086.
|
[17] |
LIU F, GUO H S, SMALLWOOD G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames [J]. Combustion and Flame, 2003, 133(4): 495–497. DOI: 10.1016/S0010-2180(03)00019-1.
|
[18] |
ZHANG C, SHEN X B, WEN J X, et al. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition [J]. Fuel, 2020, 265: 116810. DOI: 10.1016/j.fuel.2019.116810.
|
[19] |
ZHANG C, WEN J, SHEN X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22654–22660. DOI: 10.1016/j.ijhydene.2019.04.032.
|
[20] |
HU X Z, YU Q B, LIU J X. Chemical effect of CO2 on the laminar flame speeds of oxy-methane mixtures in the condition of various equivalence ratios and oxygen concentrations [J]. International Journal of Hydrogen Energy, 2016, 41(33): 15068–15077. DOI: 10.1016/j.ijhydene.2016.05.276.
|
[21] |
BAI C H, LIU W J, YAO J, et al. Explosion characteristics of liquid fuels at low initial ambient pressures and temperatures [J]. Fuel, 2020, 265: 116951. DOI: 10.1016/j.fuel.2019.116951.
|
[22] |
GRABARCZYK M, TEODORCZYK A, DI SARLI V, et al. Effect of initial temperature on the explosion pressure of various liquid fuels and their blends [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 775–779. DOI: 10.1016/j.jlp.2016.08.013.
|
[23] |
NIE B S, YANG L L, GE B Q, et al. Chemical kinetic characteristics of methane/air mixture explosion and its affecting factors [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 675–682. DOI: 10.1016/j.jlp.2017.02.021.
|
[24] |
CHU H Q, XIANG L K, MENG S, et al. Effects of N2 dilution on laminar burning velocity, combustion characteristics and NO x emissions of rich CH4-air premixed flames [J]. Fuel, 2021, 284: 119017. DOI: 10.1016/j.fuel.2020.119017.
|
[25] |
LI J, HUANG H Y, KOBAYASHI N, et al. Numerical study on effect of oxygen content in combustion air on ammonia combustion [J]. Energy, 2015, 93: 2053–2068. DOI: 10.1016/j.energy.2015.10.060.
|
[26] |
ZHENG L G, DU D P, WANG J, et al. Study on premixed flame dynamics of CH4/O2/CO2 mixtures [J]. Fuel, 2019, 256: 115913. DOI: 10.1016/j.fuel.2019.115913.
|
[27] |
李成兵. N2/CO2/H2O抑制甲烷爆炸化学动力学机理分析 [J]. 中国安全科学学报, 2010, 20(8): 88–92. DOI: 10.3969/j.issn.1003-3033.2010.08.014.
LI C B. Chemical kinetics mechanism analysis of N2/CO2/H2O suppressing methane explosion [J]. China Safety Science Journal, 2010, 20(8): 88–92. DOI: 10.3969/j.issn.1003-3033.2010.08.014.
|
[28] |
高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
GAO N, ZHANG Y S, HU Y T. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
|
[29] |
CLANET C, SEARBY G. On the tulip flame phenomenon [J]. Combustion and Flame, 1996, 105(1/2): 225–238. DOI: 10.1016/0010-2180(95)00195-6.
|
[30] |
SHEN X B, ZHANG C, XIU G, et al. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct [J]. Energy, 2019, 176: 265–271. DOI: 10.1016/j.energy.2019.03.193.
|
[31] |
XIAO H H, SHEN X B, SUN J H. Experimental study and three-dimensional simulation of premixed hydrogen/air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2012, 37(15): 11466–11473. DOI: 10.1016/j.ijhydene.2012.05.006.
|
[32] |
XIAO H H, HOUIM R W, ORAN E S. Formation and evolution of distorted tulip flames [J]. Combustion and Flame, 2015, 162(11): 4084–4101. DOI: 10.1016/j.combustflame.2015.08.020.
|
[33] |
PONIZY B, CLAVERIE A, VEYSSIÈRE B. Tulip flame: the mechanism of flame front inversion [J]. Combustion and Flame, 2014, 161(12): 3051–3062. DOI: 10.1016/j.combustflame.2014.06.001.
|
[34] |
GONZALEZ M, BORGHI R, SAOUAB A. Interaction of a flame front with its self-generated flow in an enclosure: the tulip flame phenomenon [J]. Combustion and Flame, 1992, 88(2): 201–220. DOI: 10.1016/0010-2180(92)90052-Q.
|
[35] |
DUNN-RANKIN D, SAWYER R F. Tulip flames: changes in shape of premixed flames propagating in closed tubes [J]. Experiments in Fluids, 1998, 24(2): 130–140. DOI: 10.1007/s003480050160.
|
[36] |
李艳超, 毕明树, 高伟. 耦合火焰不稳定的爆炸超压预测 [J]. 爆炸与冲击, 2020, 40(1): 012101. DOI: 10.11883/bzycj-2019-0004.
LI Y C, BI M S, GAO W. Explosion pressure prediction considering the flame instabilities [J]. Explosion and Shock Waves, 2020, 40(1): 012101. DOI: 10.11883/bzycj-2019-0004.
|
[37] |
吕启申, 臧小为, 潘旭海, 等. 温度和浓度对甲醇喷雾爆炸特性参数的影响 [J]. 爆炸与冲击, 2019, 39(9): 095402. DOI: 10.11883/bzycj-2018-0121.
LYU Q S, ZANG X W, PAN X H, et al. Effects of temperature and concentration on characteristic parameters of methanol explosion [J]. Explosion and Shock Waves, 2019, 39(9): 095402. DOI: 10.11883/bzycj-2018-0121.
|
[38] |
HERNANDEZ F, ABDEL-JAWAD M, HAO H. Simplified multiple equations’ inverse problem of vented vessels subjected to internal gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 65–79. DOI: 10.1016/j.jlp.2015.03.007.
|
[39] |
BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning in tubes [J]. Combustion and Flame, 2007, 150(4): 263–276. DOI: 10.1016/j.combustflame.2007.01.004.
|
[40] |
WEI S M, YU M G, PEI B, et al. Suppression of CO2 and H2O on the cellular instability of premixed methane/air flame [J]. Fuel, 2020, 264: 116862. DOI: 10.1016/j.fuel.2019.116862.
|
[41] |
XIANG L K, CHU H Q, REN F, et al. Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames [J]. Journal of the Energy Institute, 2019, 92(5): 1487–1501. DOI: 10.1016/j.joei.2018.06.018.
|