Volume 42 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHAO Chunfeng, HE Kaicheng, LU Xin, PAN Rong, WANG Jingfeng, LI Xiaojie. Numerical study of blast resistance of curved steel-concrete-steel composite slabs[J]. Explosion And Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205
Citation: ZHAO Chunfeng, HE Kaicheng, LU Xin, PAN Rong, WANG Jingfeng, LI Xiaojie. Numerical study of blast resistance of curved steel-concrete-steel composite slabs[J]. Explosion And Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205

Numerical study of blast resistance of curved steel-concrete-steel composite slabs

doi: 10.11883/bzycj-2021-0205
  • Received Date: 2021-05-25
  • Accepted Date: 2021-11-17
  • Rev Recd Date: 2021-08-02
  • Available Online: 2021-11-29
  • Publish Date: 2022-02-28
  • Curved steel-concrete-steel (CSCS) composite slabs can increase the compression range of concrete so as to give full play to the compressive strength of the concrete and the tensile strength of the steel plate. It has been used in high-rise buildings, nuclear reactor containment, Arctic caisson and oil storage tanks and other important building structures. According to the specifications, three CSCS composite slabs with different fittings were designed. Based on the nonlinear finite element program ANSYS/LS-DYNA, the damage modes, midpoint displacement, energy consumption, etc. of the composite slabs under the action of near field explosion were studied, and the energy consumption and damage mechanism of the three different slabswere compared. The midpoint displacement and pressure of the CSCS composite slab were extracted from the finite element simulations. The results of the midpoint displacement were compared with the existing field explosion test results, and the results of pressure were compared with the empirical formula, which verified the rationality and effectiveness of the finite element model. Taking the midpoint displacement of the backsteel plate as the index, the effects of the explosive quantity, concrete strength and steel plate thickness on the anti-explosion performance of the CSCScomposite slabswere analyzed. The results show that the curved slabs maintain good integrity under the action of near-field explosion, there is no concrete fragments dispersion phenomenon, and they still have a continuous bearing capacity. Meanwhile, they have a better anti-explosion performance than traditional planar steel-concrete-steel composite slabs. The connection performance of the overlapping studs is stronger than that of the discrete studs, but slightly weaker than that of the pair studs. Increasing the concrete strength can reduce the midpoint displacement but cannot improve the damage condition of the concrete. Increasing the thickness of the steel plate can significantly reduce the midpoint displacement of the steel plate and improve the anti-explosion ability of CSCS composite slabs.
  • loading
  • [1]
    赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.

    ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
    [2]
    赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.

    ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
    [3]
    YAN J B, LIU X M, LIEW J Y R, et al. Steel-concrete-steel sandwich system in Arctic offshore structure: materials, experiments, and design [J]. Materials & Design, 2016, 91: 111–121. DOI: 10.1016/j.matdes.2015.11.084.
    [4]
    YAN C, WANG Y H, ZHAI X M, et al. Experimental study on curved steel-concrete-steel sandwich shells under concentrated load by a hemi-spherical head [J]. Thin-Walled Structures, 2019, 137: 117–128. DOI: 10.1016/j.tws.2019.01.007.
    [5]
    彭先泽, 杨军, 李顺波, 等. 爆炸冲击载荷作用下双层钢板混凝土板与钢筋混凝土板动态响应对比研究 [J]. 防灾科技学院学报, 2012, 14(3): 18–23. DOI: 10.3969/j.issn.1673-8047.2012.03.004.

    PENG X Z, YANG J, LI S B, et al. Comparative study on dynamic response of bi-steel slab and reinforced concrete slab under blast loading [J]. Journal of Institute of Disaster Prevention, 2012, 14(3): 18–23. DOI: 10.3969/j.issn.1673-8047.2012.03.004.
    [6]
    卢欣. 钢-混凝土组合墙板抗接触爆炸性能实验及数值研究 [D]. 合肥: 合肥工业大学, 2020. DOI: 10.27101/d.cnki.ghfgu.2020.001546.
    [7]
    HUANG Z Y, LIEW J Y R. Experimental and analytical studies of curved steel-concrete-steel sandwich panels under patch loads [J]. Materials & Design, 2016, 93: 104–117. DOI: 10.1016/j.matdes.2015.12.144.
    [8]
    YAN C, WANG Y H, ZHAI X M. Low velocity impact performance of curved steel-concrete-steel sandwich shells with bolt connectors [J]. Thin-Walled Structures, 2020, 150: 106672. DOI: 10.1016/j.tws.2020.106672.
    [9]
    YAN J B, XIONG M X, QIAN X D, et al. Numerical and parametric study of curved steel-concrete-steel sandwich composite beams under concentrated loading [J]. Materials and Structures, 2016, 49(10): 3981–4001. DOI: 10.1617/s11527-015-0768-2.
    [10]
    MENG L Z, WANG Y H, ZHAI X M. Modeling anddynamic response ofcurved steel-concrete-steel sandwich shells under blast loading [J]. International Journal of Steel Structures, 2020, 20(5): 1663–1681. DOI: 10.1007/s13296-020-00403-8.
    [11]
    HUANG Z Y, LIEW J Y R. Nonlinear finite element modelling and parametric study of curved steel-concrete-steel double skin composite panels infilled with ultra-lightweight cement composite [J]. Construction and Building Materials, 2015, 95: 922–938. DOI: 10.1016/j.conbuildmat.2015.07.134.
    [12]
    中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015 [S]. 北京: 中国建筑工业出版社, 2016.
    [13]
    周云波, 郭启涛, 佘磊, 等. 基于LBE方法的驾驶室防护模拟 [J]. 北京理工大学学报, 2016, 36(3): 237–241. DOI: 10.15918/j.tbit1001-0645.2016.03.004.

    ZHOU Y B, GUO Q T, SHE L, et al. Simulation of vehicle cabin protection based on load blast enhanced method [J]. Transactions of Beijing Institute of Technology, 2016, 36(3): 237–241. DOI: 10.15918/j.tbit1001-0645.2016.03.004.
    [14]
    HAN Y Z, LIU H B. Finite element simulation of medium-range blast loading using LS-DYNA [J]. Shock and Vibration, 2015(2): 1–9. DOI: 10.1155/2015/631493.
    [15]
    BAKER W E. Explosions in air[M]. Texas, USA: University of Texas press, 1973.
    [16]
    HALLQUIST J O. LS-DYNA keyword user’s manuaL [Z]. California, USA: Livermore Software Technology Corporation, 2007.
    [17]
    BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
    [18]
    WANG Y H, LIEW J Y R, LEE S C. Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading [J]. International Journal of Impact Engineering, 2015, 76: 221–231. DOI: 10.1016/j.ijimpeng.2014.10.005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(30)  / Tables(3)

    Article Metrics

    Article views (514) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return