Citation: | ZHAO Chunfeng, HE Kaicheng, LU Xin, PAN Rong, WANG Jingfeng, LI Xiaojie. Numerical study of blast resistance of curved steel-concrete-steel composite slabs[J]. Explosion And Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205 |
[1] |
赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
|
[2] |
赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
|
[3] |
YAN J B, LIU X M, LIEW J Y R, et al. Steel-concrete-steel sandwich system in Arctic offshore structure: materials, experiments, and design [J]. Materials & Design, 2016, 91: 111–121. DOI: 10.1016/j.matdes.2015.11.084.
|
[4] |
YAN C, WANG Y H, ZHAI X M, et al. Experimental study on curved steel-concrete-steel sandwich shells under concentrated load by a hemi-spherical head [J]. Thin-Walled Structures, 2019, 137: 117–128. DOI: 10.1016/j.tws.2019.01.007.
|
[5] |
彭先泽, 杨军, 李顺波, 等. 爆炸冲击载荷作用下双层钢板混凝土板与钢筋混凝土板动态响应对比研究 [J]. 防灾科技学院学报, 2012, 14(3): 18–23. DOI: 10.3969/j.issn.1673-8047.2012.03.004.
PENG X Z, YANG J, LI S B, et al. Comparative study on dynamic response of bi-steel slab and reinforced concrete slab under blast loading [J]. Journal of Institute of Disaster Prevention, 2012, 14(3): 18–23. DOI: 10.3969/j.issn.1673-8047.2012.03.004.
|
[6] |
卢欣. 钢-混凝土组合墙板抗接触爆炸性能实验及数值研究 [D]. 合肥: 合肥工业大学, 2020. DOI: 10.27101/d.cnki.ghfgu.2020.001546.
|
[7] |
HUANG Z Y, LIEW J Y R. Experimental and analytical studies of curved steel-concrete-steel sandwich panels under patch loads [J]. Materials & Design, 2016, 93: 104–117. DOI: 10.1016/j.matdes.2015.12.144.
|
[8] |
YAN C, WANG Y H, ZHAI X M. Low velocity impact performance of curved steel-concrete-steel sandwich shells with bolt connectors [J]. Thin-Walled Structures, 2020, 150: 106672. DOI: 10.1016/j.tws.2020.106672.
|
[9] |
YAN J B, XIONG M X, QIAN X D, et al. Numerical and parametric study of curved steel-concrete-steel sandwich composite beams under concentrated loading [J]. Materials and Structures, 2016, 49(10): 3981–4001. DOI: 10.1617/s11527-015-0768-2.
|
[10] |
MENG L Z, WANG Y H, ZHAI X M. Modeling anddynamic response ofcurved steel-concrete-steel sandwich shells under blast loading [J]. International Journal of Steel Structures, 2020, 20(5): 1663–1681. DOI: 10.1007/s13296-020-00403-8.
|
[11] |
HUANG Z Y, LIEW J Y R. Nonlinear finite element modelling and parametric study of curved steel-concrete-steel double skin composite panels infilled with ultra-lightweight cement composite [J]. Construction and Building Materials, 2015, 95: 922–938. DOI: 10.1016/j.conbuildmat.2015.07.134.
|
[12] |
中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015 [S]. 北京: 中国建筑工业出版社, 2016.
|
[13] |
周云波, 郭启涛, 佘磊, 等. 基于LBE方法的驾驶室防护模拟 [J]. 北京理工大学学报, 2016, 36(3): 237–241. DOI: 10.15918/j.tbit1001-0645.2016.03.004.
ZHOU Y B, GUO Q T, SHE L, et al. Simulation of vehicle cabin protection based on load blast enhanced method [J]. Transactions of Beijing Institute of Technology, 2016, 36(3): 237–241. DOI: 10.15918/j.tbit1001-0645.2016.03.004.
|
[14] |
HAN Y Z, LIU H B. Finite element simulation of medium-range blast loading using LS-DYNA [J]. Shock and Vibration, 2015(2): 1–9. DOI: 10.1155/2015/631493.
|
[15] |
BAKER W E. Explosions in air[M]. Texas, USA: University of Texas press, 1973.
|
[16] |
HALLQUIST J O. LS-DYNA keyword user’s manuaL [Z]. California, USA: Livermore Software Technology Corporation, 2007.
|
[17] |
BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
|
[18] |
WANG Y H, LIEW J Y R, LEE S C. Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading [J]. International Journal of Impact Engineering, 2015, 76: 221–231. DOI: 10.1016/j.ijimpeng.2014.10.005.
|
1. | 王克,侯海量,李永清,李典. 攻角对杆状弹体入水侵彻特性影响数值分析. 舰船科学技术. 2023(13): 6-13 . ![]() | |
2. | 高圣智,赵著杰,侯海量,李典,王克. 胞元膨胀特性及其对水锤效应的影响数值分析(英文). 船舶力学. 2023(12): 1840-1855 . ![]() | |
3. | 杨秋足,张玉林,杨扬,徐绯,王计真. 水锤效应影响因素及防护结构的数值研究. 航空工程进展. 2022(03): 40-49 . ![]() | |
4. | 高圣智,侯海量,白雪飞,李永清,李典. 高速弹体侵彻下充液结构的破坏特性及防护技术研究进展. 舰船科学技术. 2021(01): 1-10 . ![]() | |
5. | 张元豪,程忠庆,侯海量,朱锡. 立方体弹高速侵彻防护液舱剩余特性的数值模拟. 高压物理学报. 2019(01): 141-147 . ![]() | |
6. | 李营,张磊,杜志鹏,赵鹏铎,周心桃,方岱宁. 夹芯强度对新型液舱防护效能的影响. 船舶力学. 2019(01): 58-67 . ![]() | |
7. | 马丽英,李向东,周兰伟,蓝肖颖,宫小泽,姚志军. 高速破片撞击充液容器时容器壁面的损伤. 爆炸与冲击. 2019(02): 59-70 . ![]() | |
8. | 纪杨子燚,李向东,周兰伟,蓝肖颖. 高速破片撞击充液容器形成液压水锤的试验研究. 国防科技大学学报. 2019(03): 70-76 . ![]() | |
9. | 纪杨子燚,李向东,周兰伟,蓝肖颖. 高速侵彻体撞击充液容器形成的液压水锤效应研究进展. 振动与冲击. 2019(19): 242-252 . ![]() | |
10. | 赵娜,拾路,任鹏,叶仁传. 不同含水量液舱在弹体撞击下的动态响应特性. 船舶工程. 2019(12): 71-77 . ![]() | |
11. | 吴晓光,李典,吴国民,侯海量,朱锡,戴文喜. 高速杆式弹侵彻下蓄液结构的防护能力. 爆炸与冲击. 2018(01): 76-84 . ![]() | |
12. | 李营,张玮,杜志鹏,张磊,赵鹏铎,方岱宁. 球形弹体打击作用下宽距水间隔铝板的动态响应特性. 振动与冲击. 2018(01): 106-110 . ![]() | |
13. | 刘雨曦,任鹏,拾路. 弹体低速撞击下蓄液结构毁伤特性研究. 振动与冲击. 2018(15): 84-89 . ![]() | |
14. | 陈长海,侯海量,张元豪,戴文喜,朱锡,方志威. 破片高速侵彻中厚背水钢板的剩余特性. 爆炸与冲击. 2017(06): 959-965 . ![]() | |
15. | 陈长海,侯海量,张元豪,朱锡,李典. 钝头弹高速斜侵彻中厚背水金属靶板的机理研究. 工程力学. 2017(11): 240-248 . ![]() | |
16. | 张元豪,朱锡,陈长海. 破片高速侵彻防护液舱剩余特性研究. 舰船科学技术. 2017(07): 49-53 . ![]() | |
17. | 唐红春,王璐,史永高. 武器发射弹体内塑料弹带强度优化设计仿真. 计算机仿真. 2017(07): 10-13+72 . ![]() | |
18. | 张元豪,陈长海,侯海量,朱锡. 高速破片侵彻防护液舱后的水中运动特性试验研究. 兵器材料科学与工程. 2016(05): 44-48 . ![]() |