WANG Jianjun, YUAN Kangbo, ZHANG Xiaoqiong, WANG Ruifeng, GAO Meng, GUO Weiguo. Proposition and research progress of the third-type strain aging[J]. Explosion And Shock Waves, 2021, 41(5): 051101. doi: 10.11883/bzycj-2020-0422
Citation: YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214

Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA

doi: 10.11883/bzycj-2021-0214
  • Received Date: 2021-05-27
  • Accepted Date: 2022-01-18
  • Rev Recd Date: 2021-09-08
  • Available Online: 2022-02-10
  • Publish Date: 2022-02-28
  • Due to the complexity of the mechanism of the electro-hydraulic effect, few commercial numerical simulation software can describe the internal characteristics of the plasma channel. In order to apply shock waves generated by hydro-electric effects to the existing numerical simulation software to meet the needs of engineering applications, in this paper, two methods based on LS-DYNA were introduced to simulate indirectly the shock wave generated by the electro-hydraulic effect, i.e. Underwater explosion equivalence (including explosion energy equivalence and shock wave energy equivalence) and ideal gas equivalence. Explosion energy equivalence is mainly based on the principle that the deposited energy injected into the plasma channel is equal to the combustion energy of the explosive. Shock wave energy equivalence is mainly based on the principle that the shock wave energy generated by an explosion is equal to that generated by the hydro-electric effect. However, ideal gas equivalence method is different from underwater explosion equivalence. Adopting ideal gas equivalence method, the plasma channel is regarded as an adiabatic expansion ideal gas, and the pressure in the plasma channel is characterized by the relevant keywords in LS-DYNA. In addition, the peak pressure of the shock wave generated by various methods was compared, and underwater explosion equivalence was improved based on the empirical formula of an underwater explosion and the empirical formula of the hydro-electric effect. Moreover, the difference in peak pressure based on different equivalence methods under different deposition energies was analyzed. The results show that the peak pressure of shock wave calculated by three different equivalent methods is different. The peak pressure based on the explosion energy equivalence method is the highest, The peak pressure based on the explosion energy equivalence method is medium, and the peak pressure based on the explosion energy equivalence method is the lowest. The peak pressure based on the ideal gas equivalence method is one to two orders of magnitude less than that based on the former two methods. The shock wave velocity based on the explosion energy equivalence method is equal to that based on the shock wave energy equivalence method, and higher than that based on ideal gas equivalence method.With the decrease of the deposited energy, the peak pressures based on the three equivalence methods all decrease in varying degrees, however, the order of the peak pressure does not change. The improved method for underwater explosion equivalence can simulate the peak pressure of the shock wave more accurately at different deposited energies, and the peak pressure fits well with the Touya empirical formula. In order to simulate accurately the peak pressure of the shock wave based on LS-DYNA, in addition to selecting the appropriate equivalence method, we should also combine the specific discharge conditions and establish an appropriate numerical model to realize the rapid calculation of the peak pressure under the conditions satisfying the calculation requirements.
  • [1]
    Л·А·Ю·尤特金. 液电效应 [M]. 北京: 科学出版社, 1962.
    [2]
    陈景秋, 韦春霞, 邓艇, 等. 体外冲击波碎石技术的力学机理的研究 [J]. 力学进展, 2007, 37(4): 590–599. DOI: 10.3321/j.issn:1000-0992.2007.04.008.

    CHENG J Q, WEI C X, DENG T, et al. Studies on mechanical mechanism about stone comminution and tissue trauma in extra-corporeal shock wave lithotripsy [J]. Advances in Mechanics, 2007, 37(4): 590–599. DOI: 10.3321/j.issn:1000-0992.2007.04.008.
    [3]
    张雷, 周锦进. 液中放电成型技术 [J]. 机械制造, 1998(2): 5–7.
    [4]
    鄢宇杰, 付荣耀, 李楠, 等. 电弧压裂技术研究现状与发展 [J]. 高压电器, 2019, 55(9): 71–77. DOI: 10.13296/j.1001-1609.hva.2019.09.010.

    YAN Y J, FU R Y, LI N, et al. Research status and development of arc fracturing technology [J]. High Voltage Apparatus, 2019, 55(9): 71–77. DOI: 10.13296/j.1001-1609.hva.2019.09.010.
    [5]
    喻越, 朱鑫磊, 黄昆, 等. 应用于石油解堵增产的水中脉冲放电特性实验研究 [J]. 高电压技术, 2020, 46(8): 2951–2959. DOI: 10.13336/j.1003-6520.hve.20190915.

    YU Y, ZHU X L, HUANG K, et al. Experimental study on pulse discharge characteristics in water applied to oil plugging and increasing production [J]. High Voltage Engineering, 2020, 46(8): 2951–2959. DOI: 10.13336/j.1003-6520.hve.20190915.
    [6]
    李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述 [J]. 高电压技术, 2016, 42(12): 3697–3727. DOI: 10.13336/j.1003-6520.hve.20161128001.

    LI H P, YU D R, SUN W T, et al. State-of-the-art of atmospheric discharge plasmas [J]. High Voltage Engineering, 2016, 42(12): 3697–3727. DOI: 10.13336/j.1003-6520.hve.20161128001.
    [7]
    FUJITA H, KANAZAWA S, OHTANI K, et al. Initiation process and propagation mechanism of positive streamer discharge in water [J]. Journal of Applied Physics, 2014, 116(21): 213301. DOI: 10.1063/1.4902862.
    [8]
    王一博. 水中等离子体声源的理论与实验研究 [D]. 长沙: 国防科学技术大学, 2012.

    WANG Y B. Theoretical and experimental study of the underwater plasma acoustic source [D]. Changsha: National University of Defense Technology, 2012.
    [9]
    孙冰. 液相放电等离子体及其应用 [M]. 北京: 科学出版社, 2013.
    [10]
    TIMOSHKIN I V, FOURACRE R A, GIVEN M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges [J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808–4817. DOI: 10.1088/0022-3727/39/22/011.
    [11]
    吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析 [J]. 强激光与粒子束, 2020, 32(4): 120–126. DOI: 10.11884/HPLPB202032.190356.

    WU M G, LIU Y, LIN F C, et al. Characteristics analysis of electrohydraulic shockwave [J]. High Power Laser and Particle Beams, 2020, 32(4): 120–126. DOI: 10.11884/HPLPB202032.190356.
    [12]
    李培芳, 金方勤. 液中放电冲击波和等离子体参数的计算 [J]. 浙江大学学报(自然科学版), 1994, 28(1): 27–35.

    LI P F, JIN F Q. Calculations of shock wave and plasma parameters of the discharge in liquid [J]. Journal of Zhejiang University (Natural Science), 1994, 28(1): 27–35.
    [13]
    LIU S W, LIU Y, REN Y J, et al. Characteristic analysis of plasma channel and shock wave in electrohydraulic pulsed discharge [J]. Physics of Plasmas, 2019, 26(9): 93509. DOI: 10.1063/1.5092362.
    [14]
    LIU Y, LI Z Y, LI X D, et al. Energy transfer efficiency improvement of liquid pulsed current discharge by plasma channel length regulation method [J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3231–3239. DOI: 10.1109/TPS.2017.2651105.
    [15]
    LIU Y, LI Z Y, LI X D, et al. Intensity improvement of shock waves induced by liquid electrical discharges [J]. Physics of Plasmas, 2017, 24(4): 43510. DOI: 10.1063/1.4980848.
    [16]
    刘毅, 李志远, 李显东, 等. 水中大电流脉冲放电激波影响因素分析 [J]. 中国电机工程学报., 2017, 37(9): 2741–2750. DOI: 10.13334/j.0258-8013.pcsee.160417.

    LIU Y, LI Z Y, LI X D, et al. Effect factors of the characteristics of shock waves induced by underwater high current pulsed discharge [J]. Proceedings of the CSEE, 2017, 37(9): 2741–2750. DOI: 10.13334/j.0258-8013.pcsee.160417.
    [17]
    CHAPMAN N R. Measurement of the waveform parameters of shallow explosive charges [J]. The Journal of the Acoustical Society of America, 1985, 78(2): 672–681. DOI: 10.1121/1.392436.
    [18]
    TOUYA G, REESS T, PÉCASTAING L, et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves [J]. Journal of Physics D: Applied Physics, 2006, 39(24): 5236–5244. DOI: 10.1088/0022-3727/39/24/021.
    [19]
    PARK H, LEE S R, KIM N K, et al. A numerical study of the pullout behavior of grout anchors underreamed by pulse discharge technology [J]. Computers and Geotechnics, 2013, 47: 78–90. DOI: 10.1016/j.compgeo.2012.07.005.
    [20]
    PARK H, LEE S R, KIM T K, et al. Numerical modeling of ground borehole expansion induced by application of pulse discharge technology [J]. Computers and Geotechnics, 2011, 38(4): 532–545. DOI: 10.1016/j.compgeo.2011.03.002.
    [21]
    WAKELAND P, KINCY M, GARDE J. Hydrodynamic loading of structural components due to electrical discharge in fluids [C] // 14th IEEE International Pulsed Power Conference. Dallas: IEEE, 2003. DOI: 10.1109/ppc.2003.1277962.
    [22]
    闫东. 岩体内静水压下高压脉冲放电爆轰致裂基础研究 [D]. 太原: 太原理工大学, 2017.

    YAN D. The foundational research on the high voltage pulse discharge detonation fracturing in rock mass under hydrostatic pressure [D]. Taiyuan: Taiyuan University of Technology, 2017.
    [23]
    张振福, 曾新吾, 蔡清裕. 基于LS-DYNA的水下冲击波聚焦数值模拟研究 [C] // 第十届全国冲击动力学学术会议. 太原: 中国力学学会, 2011.
    [24]
    荀涛, 杨汉武, 张建德, 等. 加速器电水锤数值模拟与实验研究 [J]. 强激光与粒子束, 2010, 22(2): 425–429. DOI: 10.3788/HPLPB20102202.0425.

    XUN T, YANG H W, ZHANG J D, et al. Numerical and experimental investigation on water shocks due to pulsed discharge in accelerators [J]. High Power Laser and Particle Beams, 2010, 22(2): 425–429. DOI: 10.3788/HPLPB20102202.0425.
    [25]
    COLE R H, WELLER R. Underwater explosions [J]. Physics Today, 1948, 1(6): 35. DOI: 10.1063/1.3066176.
    [26]
    ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. Washington D C: Naval Intelligence Support Center, 1973.
    [27]
    WOO M A, NOH H G, SONG W J, et al. Experimental validation of numerical modeling of electrohydraulic forming using an al 5052-H34 sheet [J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5): 1819–1828. DOI: 10.1007/s00170-017-0612-7.
    [28]
    GOLOVASHCHENKO S F, GILLARD A J, MAMUTOV A V, et al. Pulsed electrohydraulic springback calibration of parts stamped from advanced high strength steel [J]. Journal of Materials Processing Technology, 2014, 214(11): 2796–2810. DOI: 10.1016/j.jmatprotec.2014.01.012.
    [29]
    MAMUTOV V S, MAMUTOV A V, GOLOVASCHENKO S F. Simulation of high-voltage discharge channel in water at electro-hydraulic forming using LS-DYNA [C] // 13th International LS-DYNA Users Conference. Dearborn: 2014.
    [30]
    WOO M A, NOH H G, AN W J, et al. Numerical study on electrohydraulic forming process to reduce the bouncing effect in electromagnetic forming [J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(5): 1813–1825. DOI: 10.1007/s00170-016-9230-z.
    [31]
    胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究 [J]. 高压物理学报, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.20190773.

    HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.20190773.
    [32]
    方斌, 朱锡, 张振华, 等. 水下爆炸冲击波数值模拟中的参数影响 [J]. 哈尔滨工程大学学报, 2005, 26(4): 419–424. DOI: 10.3969/j.issn.1006-7043.2005.04.001.

    FANG B, ZHU X, ZHANG Z H, et al. Effect of parameters in numerical simulation of underwater shock wave [J]. Joumal of Harbin Engineering University, 2005, 26(4): 419–424. DOI: 10.3969/j.issn.1006-7043.2005.04.001.
  • Relative Articles

    [1]GAO Shiqing, ZOU Liyong, TANG Jiupeng, LI Ji, LIN Jianyu. Numerical simulation of single-mode Richtmyer-Meshkov instability caused by high-Mach number shock wave[J]. Explosion And Shock Waves, 2024, 44(7): 073201. doi: 10.11883/bzycj-2023-0458
    [2]ZHENG Chun, HE Yong, ZHANG Huanhao, CHEN Zhihua. On the evolution mechanism of the shock-accelerated annular SF6 cylinder[J]. Explosion And Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226
    [3]JIA Leiming, TIAN Zhou. On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer[J]. Explosion And Shock Waves, 2019, 39(12): 122202. doi: 10.11883/bzycj-2018-0510
    [4]ZHU Yuejin, YU Lei, PAN Jianfeng, PAN Zhenhua, ZHANG Penggang. Simulation on jet formation induced by interaction of shock wave with SF6 bubble[J]. Explosion And Shock Waves, 2018, 38(1): 50-59. doi: 10.11883/bzycj-2016-0135
    [5]Yi Xiangyu, ZHU Yujian, YANG Jiming. Mechanism of early-stage drop deformation in shock induced flow at limited Weber numbers[J]. Explosion And Shock Waves, 2018, 38(3): 525-533. doi: 10.11883/bzycj-2016-0269
    [6]LIN Zhenya, GUO Zeqing, ZHANG Huanhao, CHEN Zhihua, LIU Ying. Numerical simulation of influence of different initial magnetic fields on process of shock wave shocking R22 heavy gas column[J]. Explosion And Shock Waves, 2018, 38(2): 409-418. doi: 10.11883/bzycj-2016-0256
    [7]Chen Xiao, Dong Gang, Jiang Hua, Wu Jintao. Numerical studies of sinusoidally premixed flame interface instability induced by multiple shock waves[J]. Explosion And Shock Waves, 2017, 37(2): 229-236. doi: 10.11883/1001-1455(2017)02-0229-08
    [8]Zhu Yuejin, Yu Lei, Zhang Penggang, Pan Zhenhua, Pan Jianfeng, Dong Gang. Conditions for shock wave induced flame instability and detonation[J]. Explosion And Shock Waves, 2017, 37(4): 741-747. doi: 10.11883/1001-1455(2017)04-0741-07
    [9]Lin Zhenya, Zhang Huanhao, Chen Zhihua, Liu Ying. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion And Shock Waves, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11
    [10]Zheng Chun, Chen Zhihua, Zhang Huanhao, Sun Xiaohui. Numerical investigations on propagating characteristics of shock waves in different triangle wedges[J]. Explosion And Shock Waves, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07
    [11]Wang Chao, Wu Yu, Shi Honghui, Xiao Yi. Breakup process of a droplet under the impact of a shock wave[J]. Explosion And Shock Waves, 2016, 36(1): 129-134. doi: 10.11883/1001-1455(2016)01-0129-06
    [12]Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07
    [13]Guo Pan, Wu Wen-hua, Liu Jun, Wu Zhi-gang. Numerical simulation of fluid-structure interaction in defect-contained charge of solid rocket motor subjected to shock waves[J]. Explosion And Shock Waves, 2014, 34(1): 93-98.
    [14]Jiang Yao-gang, Ma Hong-hao, Shen Zhao-wu, Cheng Yang-fan, Fan Zhi-qiang, Wang Quan. Influences of shock wave in cold shock wave extinguishing system on fire extinguishing effect and surrounding environment[J]. Explosion And Shock Waves, 2013, 33(1): 67-72. doi: 10.11883/1001-1455(2013)01-0067-06
    [15]Zhu Yue-jin, Dong Gang, Liu Yi-xin, Fan Bao-chun, Jiang Hua. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion And Shock Waves, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08
    [16]LIU Jin-hong, ZOU Li-yong, BAI Jing-song, TAN Duo-wang, HUANG Wen-bin, GUO Wen-can. Richtmyer-Meshkovinstabilityofshock-acceleratedair/SF6interfaces[J]. Explosion And Shock Waves, 2011, 31(2): 135-140. doi: 10.11883/1001-1455(2011)02-0135-06
    [17]OU-YANG Liang-chen, MA Dong-jun, SUN De-jun, YIN Xie-yuan. High-amplitude single-mode perturbation evolution of Richtmyer-Meshkov instability[J]. Explosion And Shock Waves, 2008, 28(5): 407-414. doi: 10.11883/1001-1455(2008)05-0407-08
    [18]TENG Hong-hui, Lv Jun-ming, JIANG Zong-lin. Downstream detonation initiation induced by interaction between shock wave and obstacle in combustible gas mixtures[J]. Explosion And Shock Waves, 2007, 27(3): 251-258. doi: 10.11883/1001-1455(2007)03-0251-08
    [19]GUI Ming-yue, FAN Bao-chun, YU Lu-jun, JIANG Xiao-hai, DONG Gang. Numerical investigations on interaction of implosion flame with shock[J]. Explosion And Shock Waves, 2007, 27(3): 204-209. doi: 10.11883/1001-1455(2007)03-0204-06
    [20]LIN Ying-song, ZHU Tian-yu, JANG Jin-bao, YUAN Xin-fang, LI De-cong, DING Yan-sheng. Numerical simulation analysis of effect on the cement sample by blast wave in the water[J]. Explosion And Shock Waves, 2006, 26(5): 462-467. doi: 10.11883/1001-1455(2006)05-0462-06
  • Cited by

    Periodical cited type(6)

    1. 李林. 超大型油船冰区靠泊关键技术——以大连长兴岛恒力石化码头为例. 中国航海. 2020(02): 50-53+63 .
    2. 胡锦文, 尤小健, 闻心怡, 彭晓钧, 李天鹞. 舷侧水对船舶抗碰撞性能的影响. 爆炸与冲击. 2019(02): 71-80 . 本站查看
    3. 龙淑嫔. VLCC货舱区分段吊装方案的自动化设计. 舰船科学技术. 2019(14): 208-210 .
    4. 徐丽君, 岳书娟, 王猛. 船舶碰撞机理与耐撞性结构设计研究综述. 四川水泥. 2016(12): 58 .
    5. 吴文锋, 邓术章, 宋修福. 撞击不同货油舱对被撞船舷侧结构碰撞性能影响. 中国航海. 2014(03): 76-79 .
    6. 姜兴家, 张鹏, 吴文锋. 撞击位置和初速度对被撞船舶舷侧结构的影响. 中国航海. 2012(02): 76-80 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (635) PDF downloads(107) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return