Citation: | YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214 |
[1] |
Л·А·Ю·尤特金. 液电效应 [M]. 北京: 科学出版社, 1962.
|
[2] |
陈景秋, 韦春霞, 邓艇, 等. 体外冲击波碎石技术的力学机理的研究 [J]. 力学进展, 2007, 37(4): 590–599. DOI: 10.3321/j.issn:1000-0992.2007.04.008.
CHENG J Q, WEI C X, DENG T, et al. Studies on mechanical mechanism about stone comminution and tissue trauma in extra-corporeal shock wave lithotripsy [J]. Advances in Mechanics, 2007, 37(4): 590–599. DOI: 10.3321/j.issn:1000-0992.2007.04.008.
|
[3] |
张雷, 周锦进. 液中放电成型技术 [J]. 机械制造, 1998(2): 5–7.
|
[4] |
鄢宇杰, 付荣耀, 李楠, 等. 电弧压裂技术研究现状与发展 [J]. 高压电器, 2019, 55(9): 71–77. DOI: 10.13296/j.1001-1609.hva.2019.09.010.
YAN Y J, FU R Y, LI N, et al. Research status and development of arc fracturing technology [J]. High Voltage Apparatus, 2019, 55(9): 71–77. DOI: 10.13296/j.1001-1609.hva.2019.09.010.
|
[5] |
喻越, 朱鑫磊, 黄昆, 等. 应用于石油解堵增产的水中脉冲放电特性实验研究 [J]. 高电压技术, 2020, 46(8): 2951–2959. DOI: 10.13336/j.1003-6520.hve.20190915.
YU Y, ZHU X L, HUANG K, et al. Experimental study on pulse discharge characteristics in water applied to oil plugging and increasing production [J]. High Voltage Engineering, 2020, 46(8): 2951–2959. DOI: 10.13336/j.1003-6520.hve.20190915.
|
[6] |
李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述 [J]. 高电压技术, 2016, 42(12): 3697–3727. DOI: 10.13336/j.1003-6520.hve.20161128001.
LI H P, YU D R, SUN W T, et al. State-of-the-art of atmospheric discharge plasmas [J]. High Voltage Engineering, 2016, 42(12): 3697–3727. DOI: 10.13336/j.1003-6520.hve.20161128001.
|
[7] |
FUJITA H, KANAZAWA S, OHTANI K, et al. Initiation process and propagation mechanism of positive streamer discharge in water [J]. Journal of Applied Physics, 2014, 116(21): 213301. DOI: 10.1063/1.4902862.
|
[8] |
王一博. 水中等离子体声源的理论与实验研究 [D]. 长沙: 国防科学技术大学, 2012.
WANG Y B. Theoretical and experimental study of the underwater plasma acoustic source [D]. Changsha: National University of Defense Technology, 2012.
|
[9] |
孙冰. 液相放电等离子体及其应用 [M]. 北京: 科学出版社, 2013.
|
[10] |
TIMOSHKIN I V, FOURACRE R A, GIVEN M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges [J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808–4817. DOI: 10.1088/0022-3727/39/22/011.
|
[11] |
吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析 [J]. 强激光与粒子束, 2020, 32(4): 120–126. DOI: 10.11884/HPLPB202032.190356.
WU M G, LIU Y, LIN F C, et al. Characteristics analysis of electrohydraulic shockwave [J]. High Power Laser and Particle Beams, 2020, 32(4): 120–126. DOI: 10.11884/HPLPB202032.190356.
|
[12] |
李培芳, 金方勤. 液中放电冲击波和等离子体参数的计算 [J]. 浙江大学学报(自然科学版), 1994, 28(1): 27–35.
LI P F, JIN F Q. Calculations of shock wave and plasma parameters of the discharge in liquid [J]. Journal of Zhejiang University (Natural Science), 1994, 28(1): 27–35.
|
[13] |
LIU S W, LIU Y, REN Y J, et al. Characteristic analysis of plasma channel and shock wave in electrohydraulic pulsed discharge [J]. Physics of Plasmas, 2019, 26(9): 93509. DOI: 10.1063/1.5092362.
|
[14] |
LIU Y, LI Z Y, LI X D, et al. Energy transfer efficiency improvement of liquid pulsed current discharge by plasma channel length regulation method [J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3231–3239. DOI: 10.1109/TPS.2017.2651105.
|
[15] |
LIU Y, LI Z Y, LI X D, et al. Intensity improvement of shock waves induced by liquid electrical discharges [J]. Physics of Plasmas, 2017, 24(4): 43510. DOI: 10.1063/1.4980848.
|
[16] |
刘毅, 李志远, 李显东, 等. 水中大电流脉冲放电激波影响因素分析 [J]. 中国电机工程学报., 2017, 37(9): 2741–2750. DOI: 10.13334/j.0258-8013.pcsee.160417.
LIU Y, LI Z Y, LI X D, et al. Effect factors of the characteristics of shock waves induced by underwater high current pulsed discharge [J]. Proceedings of the CSEE, 2017, 37(9): 2741–2750. DOI: 10.13334/j.0258-8013.pcsee.160417.
|
[17] |
CHAPMAN N R. Measurement of the waveform parameters of shallow explosive charges [J]. The Journal of the Acoustical Society of America, 1985, 78(2): 672–681. DOI: 10.1121/1.392436.
|
[18] |
TOUYA G, REESS T, PÉCASTAING L, et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves [J]. Journal of Physics D: Applied Physics, 2006, 39(24): 5236–5244. DOI: 10.1088/0022-3727/39/24/021.
|
[19] |
PARK H, LEE S R, KIM N K, et al. A numerical study of the pullout behavior of grout anchors underreamed by pulse discharge technology [J]. Computers and Geotechnics, 2013, 47: 78–90. DOI: 10.1016/j.compgeo.2012.07.005.
|
[20] |
PARK H, LEE S R, KIM T K, et al. Numerical modeling of ground borehole expansion induced by application of pulse discharge technology [J]. Computers and Geotechnics, 2011, 38(4): 532–545. DOI: 10.1016/j.compgeo.2011.03.002.
|
[21] |
WAKELAND P, KINCY M, GARDE J. Hydrodynamic loading of structural components due to electrical discharge in fluids [C] // 14th IEEE International Pulsed Power Conference. Dallas: IEEE, 2003. DOI: 10.1109/ppc.2003.1277962.
|
[22] |
闫东. 岩体内静水压下高压脉冲放电爆轰致裂基础研究 [D]. 太原: 太原理工大学, 2017.
YAN D. The foundational research on the high voltage pulse discharge detonation fracturing in rock mass under hydrostatic pressure [D]. Taiyuan: Taiyuan University of Technology, 2017.
|
[23] |
张振福, 曾新吾, 蔡清裕. 基于LS-DYNA的水下冲击波聚焦数值模拟研究 [C] // 第十届全国冲击动力学学术会议. 太原: 中国力学学会, 2011.
|
[24] |
荀涛, 杨汉武, 张建德, 等. 加速器电水锤数值模拟与实验研究 [J]. 强激光与粒子束, 2010, 22(2): 425–429. DOI: 10.3788/HPLPB20102202.0425.
XUN T, YANG H W, ZHANG J D, et al. Numerical and experimental investigation on water shocks due to pulsed discharge in accelerators [J]. High Power Laser and Particle Beams, 2010, 22(2): 425–429. DOI: 10.3788/HPLPB20102202.0425.
|
[25] |
COLE R H, WELLER R. Underwater explosions [J]. Physics Today, 1948, 1(6): 35. DOI: 10.1063/1.3066176.
|
[26] |
ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. Washington D C: Naval Intelligence Support Center, 1973.
|
[27] |
WOO M A, NOH H G, SONG W J, et al. Experimental validation of numerical modeling of electrohydraulic forming using an al 5052-H34 sheet [J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5): 1819–1828. DOI: 10.1007/s00170-017-0612-7.
|
[28] |
GOLOVASHCHENKO S F, GILLARD A J, MAMUTOV A V, et al. Pulsed electrohydraulic springback calibration of parts stamped from advanced high strength steel [J]. Journal of Materials Processing Technology, 2014, 214(11): 2796–2810. DOI: 10.1016/j.jmatprotec.2014.01.012.
|
[29] |
MAMUTOV V S, MAMUTOV A V, GOLOVASCHENKO S F. Simulation of high-voltage discharge channel in water at electro-hydraulic forming using LS-DYNA [C] // 13th International LS-DYNA Users Conference. Dearborn: 2014.
|
[30] |
WOO M A, NOH H G, AN W J, et al. Numerical study on electrohydraulic forming process to reduce the bouncing effect in electromagnetic forming [J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(5): 1813–1825. DOI: 10.1007/s00170-016-9230-z.
|
[31] |
胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究 [J]. 高压物理学报, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.20190773.
HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.20190773.
|
[32] |
方斌, 朱锡, 张振华, 等. 水下爆炸冲击波数值模拟中的参数影响 [J]. 哈尔滨工程大学学报, 2005, 26(4): 419–424. DOI: 10.3969/j.issn.1006-7043.2005.04.001.
FANG B, ZHU X, ZHANG Z H, et al. Effect of parameters in numerical simulation of underwater shock wave [J]. Joumal of Harbin Engineering University, 2005, 26(4): 419–424. DOI: 10.3969/j.issn.1006-7043.2005.04.001.
|