Citation: | LIU Wenjin, ZHANG Qingming, MA Xiaohe, LONG Renrong, REN Jiankang, GONG Zizheng, WU Qiang, REN Siyuan. A review of the models of near-Earth object impact cratering on Earth[J]. Explosion And Shock Waves, 2021, 41(12): 121404. doi: 10.11883/bzycj-2021-0255 |
[1] |
MARUYAMA S, EBISUZAKI T. Origin of the Earth: A proposal of new model called ABEL [J]. Geoscience Frontiers, 2017, 8(2): 253–274. DOI: 10.1016/j.gsf.2016.10.005.
|
[2] |
PELTON J N, ALLAHDADI F. Handbook of cosmic hazards and planetary defense [M]. London: Springer, 2015: 5−13.
|
[3] |
ALVAREZ W. Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions [J]. Astrobiology, 2003, 3(1): 153–161. DOI: 10.1089/153110703321632480.
|
[4] |
COLLINS G S, MELOSH H J, MARCUS R A. Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth [J]. Meteoritics & Planetary Science, 2005, 40(6): 817–840. DOI: 10.1111/j.1945-5100.2005.tb00157.x.
|
[5] |
SCHULTE P, ALEGRET L, ARENILLAS I, et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary [J]. Science, 2010, 327(5970): 1214–1218. DOI: 10.1126/science.1177265.
|
[6] |
HESTROFFER D, SÁNCHEZ P, STARON L, et al. Small solar system bodies as granular media [J]. The Astronomy and Astrophysics Review, 2019, 27(1): 6. DOI: 10.1007/s00159-019-0117-5.
|
[7] |
柳森, 党雷宁, 赵君尧, 等. 小行星撞击地球的超高速问题 [J]. 力学学报, 2018, 50(6): 1311–1327. DOI: 10.6052/0459-1879-18-313.
LIU S, DANG L N, ZHAO J Y, et al. Hypervelocity issues of earth impact by asteroids [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1311–1327. DOI: 10.6052/0459-1879-18-313.
|
[8] |
SHOEMAKER E M, WEISSMAN P R, SHOEMAKER C S. The flux of periodic comets near Earth [M]. Arizona: University of Arizona Press, 1994: 313−335.
|
[9] |
BLAND P A, ARTEMIEVA N A. Efficient disruption of small asteroids by Earth’s atmosphere [J]. Nature, 2003, 424(6946): 288–291. DOI: 10.1038/nature01757.
|
[10] |
WANG X Y, LUO L, GUO H D, et al. Cratering process and morphological features of the Xiuyan impact crater in Northeast China [J]. Science China Earth Sciences, 2013, 56(10): 1629–1638. DOI: 10.1007/s11430-013-4695-1.
|
[11] |
陈鸣, 谢先德, 肖万生, 等. 依兰陨石坑: 我国东北部一个新发现的撞击构造 [J]. 科学通报, 2020, 65(10): 948–954. DOI: 10.1360/TB-2019-0704.
CHEN M, XIE X D, XIAO W S, et al. Yilan crater, a newly identified impact structure in northeast China [J]. China Science Bulletin, 2020, 65(10): 948–954. DOI: 10.1360/TB-2019-0704.
|
[12] |
OSINSKI G R, PIERAZZO E. Impact cratering: processes and products [M]. Chichester: John Wiley & Sons, 2013.
|
[13] |
GRIEVE R A F, THERRIAULT A M. Observations at terrestrial impact structures: Their utility in constraining crater formation [J]. Meteoritics & Planetary Science, 2004, 39(2): 199–216. DOI: 10.1111/j.1945-5100.2004.tb00336.x.
|
[14] |
DYPVIK H, PLADO J, HEINBERG C, et al. Impact structures and events: a Nordic perspective [J]. Episodes, 2008, 31(1): 107–114. DOI: 10.18814/epiiugs/2008/v31i1/015.
|
[15] |
PLADO J. Meteorite impact craters and possibly impact-related structures in Estonia [J]. Meteoritics & Planetary Science, 2012, 47(10): 1590–1605. DOI: 10.1111/j.1945-5100.2012.01422.x.
|
[16] |
GAULT D E, QUAIDE W L, OBERBECK V R. Impact cratering mechanics and structures [M]//FRENCH B M, SHORT N M. Shock Metamorphism of Natural Materials. Mono Book Corporation, 1968: 23−24.
|
[17] |
MELOSH H J. Impact cratering: a geologic process [M]. New York: Oxford University Press, 1989.
|
[18] |
COLLINS G S, MELOSH H J, OSINSKI G R. The impact-cratering process [J]. Elements, 2012, 8(1): 25–30. DOI: 10.2113/gselements.8.1.25.
|
[19] |
OSINSKI G R, TORNABENE L L, GRIEVE R A F. Impact ejecta emplacement on terrestrial planets [J]. Earth and Planetary Science Letters, 2011, 310(3−4): 167–181. DOI: 10.1016/j.jpgl.2011.08.012.
|
[20] |
KIEFFER S W, SIMONDS C H. The role of volatiles and lithology in the impact cratering process [J]. Reviews of Geophysics, 1980, 18(1): 143–181. DOI: 10.1029/RG018i001p00143.
|
[21] |
O’KEEFE J D, AHRENS T J. Cometary and meteorite swarm impact on planetary surfaces [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B8): 6668–6680. DOI: 10.1029/JB087iB08p06668.
|
[22] |
PIERAZZO E, MELOSH H J. Melt production in oblique impacts [J]. Icarus, 2000, 145(1): 252–261. DOI: 10.1006/icar.1999.6332.
|
[23] |
AHRENS T J, O’KEEFE J D. Shock melting and vaporization of Lunar rocks and minerals [J]. The Moon, 1972, 4(41): 214–249. DOI: 10.1007/bf00562927.
|
[24] |
DENCE M R. The extraterrestrial origin of Canadian craters [J]. Annals of the New York Academy of Sciences, 1965, 123(2): 941–969. DOI: 10.1111/j.1749-6632.1965.tb20411.x.
|
[25] |
TURTLE E P, PIERAZZO E, COLLINS G S, et al. Impact structures: what does crater diameter mean? [M]. Portland: The Geological Society of America, 2005: 1−24. DOI: 10.1130/0-8137-2384-1.1.
|
[26] |
MELOSH H J, IVANOV B A. Impact crater collapse [J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 385–415. DOI: 10.1146/annurev.earth.27.1.385.
|
[27] |
PIKE R J. Control of crater morphology by gravity and target type: Mars, Earth, Moon. [C]// 11th Lunar and Planetary Science Conference. New York, USA: Pergamon Press, 1980.
|
[28] |
PIKE R J. Size-dependence in the shape of fresh impact craters on the moon [M]. New York, USA: Pergamon Press, 1977: 489−509.
|
[29] |
PILKINGTON M, GRIEVE R A F. The geophysical signature of terrestrial impact craters [J]. Reviews of Geophysics, 1992, 30(2): 161–181. DOI: 10.1029/92RG00192.
|
[30] |
OSINSKI G R, BUNCH T E, FLEMMING R L, et al. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona [J]. Earth and Planetary Science Letters, 2015, 432: 283–292. DOI: 10.1016/j.jpgl.2015.10.021.
|
[31] |
GRIEVE R A F, GARVIN J B. A geometric model for excavation and modification at terrestrial simple impact craters [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B13): 11561–11572. DOI: 10.1029/JB089iB13p11561.
|
[32] |
TREDOUX M, HART R J, CARLSON R W, et al. Ultramafic rocks at the center of the Vredefort structure: further evidence for the crust on edge model [J]. Geology, 1999, 27(10): 923–926.
|
[33] |
OSINSKI G R, LEE P, SPRAY J G, et al. Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic [J]. Meteoritics & Planetary Science, 2005, 40(12): 1759–1776. DOI: 10.1111/j.1945-5100.2005.tb00145.x.
|
[34] |
CLARKE J, KNIGHTLY P, RUPERT S. Melt-water formed dark streaks on slopes of Haughton crater as possible Mars analogues [J]. International Journal of Astrobiology, 2019, 18: 518–526. DOI: 10.1017/S1473550418000526.
|
[35] |
HOUSEN K R, SWEET W J, HOLSAPPLE K A. Impacts into porous asteroids [J]. Icarus, 2018, 300: 72–96. DOI: 10.1016/j.icarus.2017.08.019.
|
[36] |
STÖFFLER D, GAULT D E, WEDEKIND J, et al. Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta [J]. Journal of Geophysical Research, 1975, 80(29): 4062–4077. DOI: 10.1029/jb080i029p04062.
|
[37] |
GAULT D E, WEDEKIND J A. Experimental impact “craters” formed in water: gravity scaling realized [J]. Eos, Transactions-American Geophysical Union, 1978, 59(12): 1121.
|
[38] |
KENKMANN T, DEUTSCH A, THOMA K, et al. The MEMIN research unit: Experimental impact cratering [J]. Meteoritics & Planetary Science, 2013, 48(1): 1–2. DOI: 10.1111/maps.12035.
|
[39] |
EBERT M, HECHT L, DEUTSCH A, et al. Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments [J]. Geochimica et Cosmochimica Acta, 2014, 133: 257–279. DOI: 10.1016/j.gca.2014.02.034.
|
[40] |
HARRISS K H, BURCHELL M J. Hypervelocity impacts into ice-topped layered targets: Investigating the effects of ice crust thickness and subsurface density on crater morphology [J]. Meteoritics & Planetary Science, 2017, 52(7): 1505–1522. DOI: 10.1111/maps.12913.
|
[41] |
HOLSAPPLE K A, SCHMIDT R M. On the scaling of crater dimensions: 1. explosive processes [J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B12): 7247–7256. DOI: 10.1029/JB085iB12p07247.
|
[42] |
SUN Y H, SHI C C, LIU Z, et al. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets [J]. Shock and Vibration, 2015, 2015: 265321. DOI: 10.1155/2015/265321.
|
[43] |
李卧东, 王明洋, 施存程, 等. 地质类材料超高速撞击相似关系与实验研究综述 [J]. 防护工程, 2015, 37(2): 55–62.
LI W D, WANG M Y, SHI C C, et al. Review of similarity laws and scaling experiments research of hypervelocity impact on geological material targets [J]. Protective Engineering, 2015, 37(2): 55–62.
|
[44] |
张庆明, 黄风雷. 超高速碰撞动力学引论 [M]. 北京: 科学出版社, 2000.
ZHANG Q M, HUANG F L. An introduction to the dynamics of hypervelocity collisions [M]. Beijing: Science Press, 2000.
|
[45] |
HOERTH T, SCHAEFER F, THOMA K, et al. Hypervelocity impacts on dry and wet sandstone: observations of ejecta dynamics and crater growth [J]. Meteoritics & Planetary Science, 2013, 48(1): 23–32. DOI: 10.1111/maps.12044.
|
[46] |
经福谦. 超高速碰撞现象 [J]. 爆炸与冲击, 1990, 10(3): 279–288.
JING F Q. Hypervelocity impact phenomena [J]. Explosion and Shock Waves, 1990, 10(3): 279–288.
|
[47] |
王马法, 周智炫, 黄洁, 等. 镁合金弹丸10 km/s 撞击铝靶成坑特性实验 [J]. 爆炸与冲击, 2021, 41(5): 053302. DOI: 10.11883/bzycj-2020-0129.
WANG M F, ZHOU Z X, HUANG J, et al. Experiment on crater characteristics of aluminium targets impacted by magnesium projectiles at velocities of about 10 km/s [J]. Explosion and Shock Waves, 2021, 41(5): 053302. DOI: 10.11883/bzycj-2020-0129.
|
[48] |
POELCHAU M H, KENKMANN T, HOERTH T, et al. Impact cratering experiments into quartzite, sandstone and tuff: The effects of projectile size and target properties on spallation [J]. Icarus, 2014, 242: 211–224. DOI: 10.1016/j.icarus.2014.08.018.
|
[49] |
POELCHAU M H, KENKMANN T, THOMA K, et al. The MEMIN research unit: Scaling impact cratering experiments in porous sandstones [J]. Meteoritics & Planetary Science, 2013, 48(1): 8–22. DOI: 10.1111/maps.12016.
|
[50] |
DUFRESNE A, POELCHAU M H, KENKMANN T, et al. Crater morphology in sandstone targets: The MEMIN impact parameter study [J]. Meteoritics & Planetary Science, 2013, 48(1): 50–70. DOI: 10.1111/maps.12024.
|
[51] |
BUHL E, POELCHAU M H, DRESEN G, et al. Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed from the MEMIN Program [J]. Meteoritics & Planetary Science, 2013, 48(1): 71–86. DOI: 10.1111/j.1945-5100.2012.01431.x.
|
[52] |
HOLSAPPLE K A, HOUSEN K R. Momentum transfer in asteroid impacts. Ⅰ. theory and scaling [J]. Icarus, 2012, 221(2): 875–887. DOI: 10.1016/j.icarus.2012.09.022.
|
[53] |
HOLSAPPLE K A. The scaling of impact processes in planetary sciences [J]. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 333–373. DOI: 10.1146/annurev.ea.21.050193.002001.
|
[54] |
HOLSAPPLE K A, SCHMIDT R M. Point-Source solutions and coupling parameters in cratering mechanics [J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B7): 6350–6376. DOI: 10.1029/JB092iB07p06350.
|
[55] |
HOLSAPPLE K A, SCHMIDT R M. On the scaling of crater dimensions: 2. impact processes. [J]. Journal of Geophysical Research:Solid Earth, 1982, 87(B3): 1849–1870. DOI: 10.1029/jb087ib03p01849.
|
[56] |
HOUSEN K R, SCHMIDT R M, HOLSAPPLE K A. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis [J]. Journal of Geophysical Research:Solid Earth, 1983, 88(B3): 2485–2499. DOI: 10.1029/JB088iB03p02485.
|
[57] |
KENKMANN T, DEUTSCH A, THOMA K, et al. Experimental impact cratering: A summary of the major results of the MEMIN research unit [J]. Meteoritics & Planetary Science, 2018, 53(8): 1543–1568. DOI: 10.1111/maps.13048.
|
[58] |
HERRMANN W, WILBECK J S. Review of hypervelocity penetration theories [J]. International Journal of Impact Engineering, 1987, 5(1−4): 307–322. DOI: 10.1016/0734-743x(87)90048-0.
|
[59] |
SEDGWICK R T. Numerical techniques for modeling high velocity penetration and perforation processes [J]. 1980, 5: 253−272. DOI: 10.1016/B978-0-444-41928-6.50016-8.
|
[60] |
向家琳. 金属材料可压缩性效应对超高速碰撞中厚靶成坑的影响 [D]. 北京: 中国科学院力学研究所, 1990.
XIANG J L. Effect of compressibility of metal materials on craters of thick targets in hypervelocity collision [D]. Beijing: Institute of mechanics, Chinese Academy of Science, 1990.
|
[61] |
罗忠文. 金属材料超高速碰撞的数值模拟 [D]. 北京: 中国科学院力学研究所, 1990.
LUO Z W. Numerical simulation of hypervelocity impact of metallic materials [D]. Beijing: Institute of Mechanics, Chinese Academy of Science, 1990.
|
[62] |
CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shields [J]. International Journal of Impact Engineering, 1993, 14(1−4): 145–156. DOI: 10.1016/0734-743x(93)90016-z.
|
[63] |
SUMMERS J L, CHARTERS A C. High speed impact of metal projectiles in targets of various materials [C]// Proceedings of the 3rd Symposium on Hypervelocity Impact. Chicago, USA, 1958.
|
[64] |
BRUCE E P. Review and analysis of high velocity impact data [C]// Proceedings of the 5th Symposium on Hypervelocity Impact. Denver, Colorado, USA: Defense Technical Information Center, 1961.
|
[65] |
WALSH J. On the theory of hypervelocity impact [C]// 7th Symposium on Hypervelocity Impact. Florida, USA, 1964.
|
[66] |
CHRISTMAN D R, GEHRING J W. Analysis of high-velocity projectile penetration mechanics [J]. Journal of Applied Physics, 1966, 37(4): 1579–1587. DOI: 10.1063/1.1708570.
|
[67] |
CHARTERS A C, SUMMERS J L. Some comments on the phenomena of high speed impact [C]// Proceedings of the Dicennial Symposium. White Oak, Maryland, USA: US Naval Ordnance Laboratory, 1959.
|
[68] |
EICHELBERGER R J, Gehring J. W. Effects of Meteoroid Impacts on space vehicles [J]. ARS Journal, 1962, 32(10): 1583–1591. DOI: 10.2514/8.6339.
|
[69] |
YU S B, SUN G C, TAN Q M. Experimental laws of cratering for hypervelocity impacts of spherical projectiles into thick target [J]. International Journal of Impact Engineering, 1994, 15(1): 67–77. DOI: 10.1016/s0734-743x(05)80007-7.
|
[70] |
HERRMANN W, JONES A. Correlation of hypervelocity impact data [C]// The Fifth Symposium on Hypervelocity Impact. Denver, Colorado, USA, 1961.
|
[71] |
周劲松, 甄良, 杨德庄. 几种金属材料在2.6~7 km/s 弹丸撞击下的损伤行为 [J]. 宇航学报, 2000(2): 75–81. DOI: 10.3321/j.issn:1000-1328.2000.02.012.
ZHOU J S, ZHEN L, YANG D Z. Damage behaviors of several metal materials under impacts of projectiles with hypervelocities of 2.6−7 km /s [J]. Journal of Astronautics, 2000(2): 75–81. DOI: 10.3321/j.issn:1000-1328.2000.02.012.
|
[72] |
HOLSAPPLE K A, SCHMIDT R M. A material-strength model for apparent crater volume [C]// Proceedings of the 10th Lunar and Planetary Science Conference. 1979.
|
[73] |
HOLSAPPLE K A. Material strength and explosive property effects in cratering and ground shock [C]// The Sixth International Symposium of Blast Simulation. Cahors, France: Centre D’ Etudesde Gramat, 1979.
|
[74] |
HOLSAPPLE K A. The scaling of impact phenomena [J]. International Journal of Impact Engineering, 1987, 5(1−4): 343–355. DOI: 10.1016/0734-743X(87)90051-0.
|
[75] |
SCHMIDT R M, HOLSAPPLE K A. Theory and experiments on centrifuge cratering [J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B1): 235–252. DOI: 10.1029/JB085iB01p00235.
|
[76] |
ÖPIK E J. Meteor impact on solid surface [J]. Irish Astronomical Journal, 1958, 5(1): 14–33.
|
[77] |
SCHMIDT R M, HOUSEN K R. Some recent advances in the scaling of impact and explosion cratering [J]. International Journal of Impact Engineering, 1987, 5(1−4): 543–560. DOI: 10.1016/0734-743X(87)90069-8.
|
[78] |
ASPHAUG E, MOORE J M, MORRISON D, et al. Mechanical and geological effects of impact cratering on Ida [J]. Icarus, 1996, 120(1): 158–184. DOI: 10.1006/icar.1996.0043.
|