Citation: | WANG Mingtao, LU Yubin, CAI Xiongfeng, JIANG Xiquan, CHEN Linbi. A study of impact mechanical properties of the bamboo scrimber along the grain[J]. Explosion And Shock Waves, 2022, 42(4): 043102. doi: 10.11883/bzycj-2021-0260 |
[1] |
秦莉, 于文吉. 重组竹研究现状与展望 [J]. 世界林业研究, 2009, 22(6): 55–59. DOI: 10.13348/j.cnki.sjlyyj.2009.06.007.
QIN L, YU W J. Status and prospects of reconstituted bamboo lumber [J]. World Forestry Research, 2009, 22(6): 55–59. DOI: 10.13348/j.cnki.sjlyyj.2009.06.007.
|
[2] |
冼杏娟, 冼定国. 竹材的微观结构及其与力学性能的关系 [J]. 竹子研究汇刊, 1990, 9(3): 10–23.
XIAN X J, XIAN D G. The relationship of microstructure and mechanical properties of bamboo [J]. Journal of Bamboo Research, 1990, 9(3): 10–23.
|
[3] |
于文吉. 我国重组竹产业发展现状与趋势分析 [J]. 木材工业, 2012, 26(1): 11–14. DOI: 10.19455/j.mcgy.2012.01.005.
YU W J. Current status and future development of bamboo scrimber industry in China [J]. Chinese Journal of Wood Science and Technology, 2012, 26(1): 11–14. DOI: 10.19455/j.mcgy.2012.01.005.
|
[4] |
张俊珍, 任海青, 钟永, 等. 重组竹抗压与抗拉力学性能的分析 [J]. 南京林业大学学报(自然科学版), 2012, 36(4): 107–111. DOI: 10.3969/j.issn.1000-2006.2012.04.022.
ZHANG J Z, REN H Q, ZHONG Y, et al. Analysis of compressive and tensile mechanical properties of recombinant bamboo [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012, 36(4): 107–111. DOI: 10.3969/j.issn.1000-2006.2012.04.022.
|
[5] |
李霞镇, 钟永, 任海青, 等. 毛竹基重组竹力学性能研究 [J]. 木材加工机械, 2016, 27(4): 28–32. DOI: 10.13594/j.cnki.mcjgjx.2016.04.008.
LI X Z, ZHONG Y, REN H Q, et al. Study on mechanical properties of recombinant bamboo produced by moso bamboo [J]. Wood Processing Machinery, 2016, 27(4): 28–32. DOI: 10.13594/j.cnki.mcjgjx.2016.04.008.
|
[6] |
孙玲玲. 重组竹顺纹单轴应力-应变关系研究 [D]. 南京: 南京林业大学, 2013: 23−35.
|
[7] |
魏洋, 周梦倩, 袁礼得. 重组竹柱偏心受压力学性能 [J]. 复合材料学报, 2016, 33(2): 379–385. DOI: 10.13801/j.cnki.fhclxb.20150703.002.
WEI Y, ZHOU M Q, YUAN L D. Mechanical performance of glulam bamboo columns under eccentric loading [J]. Acta Materiae Compositae Sinica, 2016, 33(2): 379–385. DOI: 10.13801/j.cnki.fhclxb.20150703.002.
|
[8] |
WEI Y, TANG S F, JI X W, et al. Stress-strain behavior and model of bamboo scrimber under cyclic axial compression [J]. Engineering Structures, 2020, 209: 110279. DOI: 10.1016/j.engstruct.2020.110279.
|
[9] |
TAN C, LI H T, WEI D D, et al. Mechanical performance of parallel bamboo strand lumber columns under axial compression: experimental and numerical investigation [J]. Construction and Building Materials, 2020, 231: 117168. DOI: 10.1016/j.conbuildmat.2019.117168.
|
[10] |
LI X, ASHRAF M, LI H T, et al. An experimental investigation on parallel bamboo strand lumber specimens under quasi static and impact loading [J]. Construction and Building Materials, 2019, 228: 116724. DOI: 10.1016/j.conbuildmat.2019.116724.
|
[11] |
于子绚, 江泽慧, 王戈, 等. 重组竹的耐冲击性能 [J]. 东北林业大学学报, 2012, 40(4): 46–48. DOI: 10.13759/j.cnki.dlxb.2012.04.006.
YU Z X, JIANG Z H, WANG G, et al. Impact resistance properties of bamboo scrimber [J]. Journal of Northeast Forestry University, 2012, 40(4): 46–48. DOI: 10.13759/j.cnki.dlxb.2012.04.006.
|
[12] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材物理力学试验方法总则: GB/T 1928−2009 [S]. 北京: 中国标准出版社, 2009.
|
[13] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材顺纹抗压强度试验方法: GB/T 1935−2009 [S]. 北京: 中国标准出版社, 2009.
|
[14] |
王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017: 178−179.
|
[15] |
徐明利, 张若棋, 张光莹. SHPB实验中试件内早期应力平衡分析 [J]. 爆炸与冲击, 2003, 23(3): 235–240.
XU M L, ZHANG R Q, ZHANG G Y. Analysis of early stage specimen stress equilibrium in SHPB experiment [J]. Explosion and Shock Waves, 2003, 23(3): 235–240.
|
[16] |
HASSAN M, WILLE K. Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in split Hopkinson pressure bar (SHPB) using pulse shaping technique [J]. Construction and Building Materials, 2017, 144: 747–757. DOI: 10.1016/j.conbuildmat.2017.03.185.
|
[17] |
CAO S, XUE G L, SONG W D, et al. Strain rate effect on dynamic mechanical properties and microstructure of cemented tailings composites [J]. Construction and Building Materials, 2020, 247: 118537. DOI: 10.1016/j.conbuildmat.2020.118537.
|
[18] |
XIONG B B, DEMARTINO C, XIAO Y. High-strain rate compressive behavior of CFRP confined concrete: Large diameter SHPB tests [J]. Construction and Building Materials, 2019, 201: 484–501. DOI: 10.1016/j.conbuildmat.2018.12.144.
|
[19] |
WOUTS J, HAUGOU G, OUDJENE M, et al. Strain rate effects on the compressive response of wood and energy absorption capabilities - Part A: experimental investigations [J]. Composite Structures, 2016, 149: 315–328. DOI: 10.1016/j.compstruct.2016.03.058.
|
[20] |
QIN K, YANG L M, HU S S. Mechanism of strain rate effect based on dislocation theory [J]. Chinese Physics Letters, 2009, 26(3): 036103. DOI: 10.3321/j.issn:0256-307X.2009.03.050.
|
[21] |
ZHOU S C, DEMARTINO C, XIAO Y. High-strain rate compressive behavior of Douglas fir and glubam [J]. Construction and Building Materials, 2020, 258: 119466. DOI: 10.1016/j.conbuildmat.2020.119466.
|
[22] |
AL-ZUBAIDY H, ZHAO X L, AL-MAHAIDI R. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates [J]. Composite Structures, 2013, 96: 153–164. DOI: 10.1016/j.compstruct.2012.09.032.
|