Volume 42 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
CHEN Song, XI Huifeng, HUANG Shiqing, WANG Bowei, WANG Xiaogang. Mechanical properties of the mixed cellular material with soft matrix and its response to repeated impacts[J]. Explosion And Shock Waves, 2022, 42(6): 063104. doi: 10.11883/bzycj-2021-0283
Citation: CHEN Song, XI Huifeng, HUANG Shiqing, WANG Bowei, WANG Xiaogang. Mechanical properties of the mixed cellular material with soft matrix and its response to repeated impacts[J]. Explosion And Shock Waves, 2022, 42(6): 063104. doi: 10.11883/bzycj-2021-0283

Mechanical properties of the mixed cellular material with soft matrix and its response to repeated impacts

doi: 10.11883/bzycj-2021-0283
  • Received Date: 2021-07-05
  • Rev Recd Date: 2021-09-18
  • Available Online: 2022-04-28
  • Publish Date: 2022-06-24
  • The mixed cellular materials with soft matrix are a new type of cushioning and protective materials which have excellent energy absorption properties. In order to study the effect of strain rate on the mechanical behaviors of this kind of materials, uniaxial tensile and compression experiments were conducted on the artificial cartilage foam (ACF) material, at different velocities to obtain the stress-strain curves of the ACF material under different strain rate conditions. Based on the obtained stress-strain curves, the elastic moduli and material strengths of the ACF material were gained under different strain rate conditions. And the comparative tests of the ACF material and expanded polypropylene (EPP) material of the same size and thickness under multiple impacts were carried out by a drop-hammer impact test machine. By comparing the impact responses of the two materials under single and multiple impact loads, the energy absorption characteristics, and the stability of the energy absorption characteristics of the two materials were analyzed. The results reveal that the ACF material is a strain rate-sensitive material, and the stress-strain curves under different strain-rate conditions take on the same trend. The elastic modulus, tensile and compressive strengths of the material gradually increase with the increasing strain rate. Under the action of 50-J impact energy, the ACF material can absorb more than 96% of the impact energy, higher than the 70% of the impact energy absorbed by the EPP material. Moreover, the maximum displacement of the ACF material is only 40% of that of the EPP material. Therefore, the ACF material has more excellent energy absorption performance than the EPP material. The peak force, maximum displacement, and energy absorption ability of the ACF material were almost unchanged after five impacts. Compared with the EPP materials, the ACF material has more favorable recoverability and more stable repeated impact resistance. The research of the work can provide an experimental basis for the application of the mixed cellular materials with soft matrix in multiple impact protection.
  • loading
  • [1]
    王志华, 李世强, 李鑫, 等. 轻质多孔金属及其夹芯结构力学行为的研究进展 [J]. 太原理工大学学报, 2017, 48(3): 492–503. DOI: 10.16355/j.cnki.issn1007-9432tyut.2017.03.030.

    WANG Z H, LI S Q, LI X, et al. Advances in studies of the mechanical behavior of cellular metallic materials and structures [J]. Journal of Taiyuan University of Technology, 2017, 48(3): 492–503. DOI: 10.16355/j.cnki.issn1007-9432tyut.2017.03.030.
    [2]
    刘培生, 崔光, 程伟. 多孔材料性能模型研究1: 数理关系 [J]. 材料工程, 2019, 47(6): 42–62. DOI: 10.11868/j.issn.1001-4381.2018.001407.

    LIU P S, CUI G, CHENG W. Study on property model for porous materials 1: mathematical relations [J]. Journal of Materials Engineering, 2019, 47(6): 42–62. DOI: 10.11868/j.issn.1001-4381.2018.001407.
    [3]
    GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge, UK: Cambridge University Press, 1997.
    [4]
    WANG N Z, CHEN X, AO L I, et al. Three-point bending performance of a new aluminum foam composite structure [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 359–368. DOI: 10.1016/s1003-6326(16)64088-8.
    [5]
    WAN T, LIU Y, ZHOU C X, et al. Fabrication, properties, and applications of open-cell aluminum foams: a review [J]. Journal of Materials Science & Technology, 2021, 62(3): 11–24. DOI: 10.1016/j.jmst.2020.05.039.
    [6]
    ZHANG J X, YANG Y, QIN Q H, et al. Dynamic compressive response of sinusoidal corrugated core sandwich plates [J]. International Journal of Applied Mechanics, 2018, 10(7): 1850075. DOI: 10.1142/S1758825118500758.
    [7]
    朱凌, 郭开岭, 余同希, 等. 泡沫金属夹芯梁在重复冲击下的动态响应 [J]. 爆炸与冲击, 2021, 41(7): 073101. DOI: 10.11883/bzycj-2020-0198.

    ZHU L, GUO K L, YU T X, et al. Dynamic responses of metal foam sandwich beams to repeated impacts [J]. Explosion and Shock Waves, 2021, 41(7): 073101. DOI: 10.11883/bzycj-2020-0198.
    [8]
    王飞, 李剑荣, 虞吉林. 铝蜂窝结构单向压缩、失稳和破坏机制研究 [J]. 力学学报, 2001, 33(6): 741–748. DOI: 10.3321/j.issn:0459-1879.2001.06.003.

    WANG F, LI J R, YU J L. A study of instability and collapse of aluminum honeycombs under uniaxial compression [J]. Chinese Journal of Theoretical and Applied Mechanics, 2001, 33(6): 741–748. DOI: 10.3321/j.issn:0459-1879.2001.06.003.
    [9]
    张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为 [J]. 爆炸与冲击, 2014, 34(3): 278–284. DOI: 10.11883/1001-1455(2014)03-0278-07.

    ZHANG J, ZHAO G P, LU T J. High speed compression behaviour of metallic cellular materials under impact loading [J]. Explosion and Shock Waves, 2014, 34(3): 278–284. DOI: 10.11883/1001-1455(2014)03-0278-07.
    [10]
    杨宝, 汤立群, 刘逸平, 等. 冲击条件下泡沫铝的细观变形特征分析 [J]. 爆炸与冲击, 2012, 32(4): 399–403. DOI: 10.11883/1001-1455(2012)04-0399-05.

    YANG B, TANG L Q, LIU Y P, et al. Meso deformation characteristics analysis of aluminum foam under impact [J]. Explosion and Shock Waves, 2012, 32(4): 399–403. DOI: 10.11883/1001-1455(2012)04-0399-05.
    [11]
    李玲, 钱学登, 王科. 复合结构混凝土动力学特征及变形破坏机制 [J]. 煤矿安全, 2019, 50(4): 41–45. DOI: 10.13347/j.cnki.mkaq.2019.04.010.

    LI L, QIAN D K, WANG K. Dynamic characteristics and deformation failure mechanism of composite structure concrete [J]. Safety in Coal Mines, 2019, 50(4): 41–45. DOI: 10.13347/j.cnki.mkaq.2019.04.010.
    [12]
    韩李斌, 杨黎明. 泡沫混凝土动态力学性能及破坏形式 [J]. 宁波大学学报(理工版), 2017, 30(1): 68–72. DOI: 10.3969/j.issn.1001-5132.2017.01.013.

    HANG L B, YANG L M. Dynamic properties and failure types of foamed concrete [J]. Journal of Ningbo University (Natural Science and Engineering), 2017, 30(1): 68–72. DOI: 10.3969/j.issn.1001-5132.2017.01.013.
    [13]
    王必勤. EPDM发泡材料的制备及结构与性能研究[D]. 上海: 上海交通大学, 2006.

    WANG B Q. Preparation of EPDM and study on its structure and properties [D]. Shanghai, China: Shanghai Jiao Tong University, 2006.
    [14]
    景鹏. 高g值冲击测试关键技术研究[D]. 太原: 中北大学, 2009.

    JING P. High-g impact test value of the research of key technologies [D]. Taiyuan, Shanxi, China: North University of China, 2009.
    [15]
    鲁林, 李晓峰. 冲击环境作用下聚氨酯材料的应变率分布及吸能特性研究 [J]. 兵工学报, 2015, 36(S1): 213–219.

    LU L, LI X F. Research on strain rate distribution and energy absorption of polyurethane materials under shock environment [J]. Acta Armamentarii, 2015, 36(S1): 213–219.
    [16]
    杨文叶, 姜子敬, 闫雪燕, 等. EPP材料在汽车座椅中的应用和性能研究 [J]. 汽车文摘, 2021(8): 58–62. DOI: 10.19822/j.cnki.1671-6329.20210062.

    TANG W Y, JINAG Z J, YAN X Y, et al. Study on the application and performance of EPP materials in car seats [J]. Automotive Digest, 2021(8): 58–62. DOI: 10.19822/j.cnki.1671-6329.20210062.
    [17]
    金强维. EPP动态缓冲性能的研究[D]. 西安: 陕西科技大学, 2019.

    JIN Q W. Investigation on dynamic cushioning property of EPP [D]. Xi’an, Shaanxi, China: Shaanxi University of Science and Technology, 2019.
    [18]
    陈润峰, 石庚辰, 张力, 等. 人工软骨仿生材料在引信缓冲中的应用 [J]. 探测与控制学报, 2020, 42(6): 10–14.

    CHEN R F, SHI G C, ZHANG L, et al. Application of artificial cartilage biomimetic material in fuze buffer [J]. Journal of Detection & Control, 2020, 42(6): 10–14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (549) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return