Volume 42 Issue 8
Sep.  2022
Turn off MathJax
Article Contents
LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294
Citation: LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294

Crater morphology of a projectile penetrating a thick concrete target

doi: 10.11883/bzycj-2021-0294
  • Received Date: 2021-07-08
  • Accepted Date: 2022-07-07
  • Rev Recd Date: 2021-12-14
  • Available Online: 2022-07-13
  • Publish Date: 2022-09-09
  • To study the crater effect of the projectile penetrating a thick concrete target, the crater phenomenon in the penetration test was summarized, the predictive effect of the empirical formula on the crater depth, crater diameter, and crater angle was analyzed. Using the dimensional analysis method, new calculation formulas for the crater formation effect and energy consumption at the crater formation stage were established. The formulas for the crater formation effect take into account the influence of factors such as impact velocity, target strength, reinforcement ratio, projectile diameter, and projectile mass. Based on the new calculation formulas, parameterized analysis of the influencing factors of pit formation effect and the energy consumption of pit formation was performed. The results show that the dimensionless crater depth is greatly affected by the strength of the concrete target, the reinforcement ratio, and the projectile mass. For reinforced concrete, with the increase of the impact velocity, the crater depth increases first, then decreases, and then increases. Within the common range of penetration velocity and mass, the crater angle is in the range from 15° to 24°, and the mass has little effect on the crater angle. The energy consumption of the crater formation on the front surface accounts for 10% to 25% of the total kinetic energy of the projectile, and the reinforcement ratio and the strength of the target plate have a weak effect on the proportion of the energy consumption of the crater. The proportion of the energy consumed in the crater stage increases as the mass of the projectile decreases. The calculation results by the new crater effect calculation formulas for the crater depth, crater diameter, and crater angle are in good agreement with the experimental data, which can provide a reference for the design of penetrating projectiles and engineering protection.
  • loading
  • [1]
    YOUNG C W. Penetration equations: SAND97-2426 [R]. Albuquerque, USA: Sandia National Laboratories, 1997.
    [2]
    武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.

    WU H J, ZHANG S, HUANG F L. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta Armamentarii, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
    [3]
    戴湘晖, 周刚, 沈子楷, 等. 高速弹体对钢筋混凝土靶的侵彻/贯穿效应实验研究 [J]. 高压物理学报, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.

    DAI X H, ZHOU G, SHEN Z K, et al. Experimental study of high-speed projectile penetration/perforation into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.
    [4]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [5]
    薛建锋, 沈培辉, 王晓鸣. 弹体侵彻混凝土开坑阶段阻力的计算 [J]. 高压物理学报, 2016, 30(6): 499–504. DOI: 10.11858/gywlxb.2016.06.010.

    XUE J F, SHEN P H, WANG X M. Resistance during cratering for projectile penetrating into concrete target [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 499–504. DOI: 10.11858/gywlxb.2016.06.010.
    [6]
    钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.

    QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
    [7]
    刘士践, 李胜才. 动能弹垂直侵彻混凝土的实验研究及其数值模拟 [J]. 四川建筑, 2010, 30(1): 224–226. DOI: 10.3969/j.issn.1007-8983.2010.01.091.
    [8]
    邓国强, 董军, 杨秀敏, 等. 弹丸冲击下钢筋混凝土板的局部破坏形态分析 [C] // 中国力学学会工程力学编辑部. 第十三届全国结构工程学术会议论文集(第Ⅲ册). 北京: 清华大学出版社, 2004: 33−36.
    [9]
    吴祥云, 李永池, 何翔, 等. 细长弹体侵彻混凝土的机理研究 [J]. 岩石力学与工程学报, 2003, 22(11): 1817–1822. DOI: 10.3321/j.issn:1000-6915.2003.11.013.

    WU X Y, LI Y C, HE X, et al. On mechanism of slender projectile penetrating into concrete [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1817–1822. DOI: 10.3321/j.issn:1000-6915.2003.11.013.
    [10]
    张爽, 武海军, 黄风雷. 弹体侵彻钢筋混凝土靶开坑深度研究 [J]. 北京理工大学学报, 2018, 38(6): 565–571. DOI: 10.15918/j.tbit1001-0645.2018.06.003.

    ZHANG S, WU H J, HUANG F L. Investigation on crater depth of projectile penetrating into reinforced concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(6): 565–571. DOI: 10.15918/j.tbit1001-0645.2018.06.003.
    [11]
    戴湘晖, 段建, 周刚, 等. 低速弹体贯穿钢筋混凝土多层靶的破坏特性 [J]. 兵工学报, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.

    DAI X H, DUAN J, ZHOU G, et al. Damage effect of low velocity projectile perforating into multi-layered reinforced concrete slabs [J]. Acta Armamentarii, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.
    [12]
    刘海鹏, 高世桥, 金磊, 等. 弹侵彻混凝土靶面成坑的分阶段分析 [J]. 兵工学报, 2009, 30(S2): 52–56.

    LIU H P, GAO S Q, JIN L, et al. Phase analysis on crater-forming of projectile penetrating into concrete target [J]. Acta Armamentarii, 2009, 30(S2): 52–56.
    [13]
    GAULT D E. Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks [J]. The Moon, 1973, 6(1/2): 32–44. DOI: 10.1007/BF02630651.
    [14]
    FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [15]
    宋春明, 王明洋, 邹慧辉, 等. 装甲陶瓷复合靶体抗侵彻性能试验研究 [J]. 防护工程, 2019, 41(1): 1–6.

    SONG C M, WANG M Y, ZOU H H, et al. Experimental study on anti-penetration performance of armored ceramic composite targets [J]. Protective Engineering, 2019, 41(1): 1–6.
    [16]
    晋小超. 弹体侵彻混凝土靶体侵彻深度的数值模拟研究 [D]. 太原: 太原理工大学, 2016. DOI: 10.7666/d.D01008064.

    JIN X C. Numerical study on the depth of penetration into concrete targets by projectiles [D]. Taiyuan: Taiyuan University of Technology, 2016. DOI: 10.7666/d.D01008064.
    [17]
    温志鹏, 王玉祥, 吕本明, 等. 弹体垂直侵彻混凝土介质开坑深度的计算方法 [J]. 常州工学院学报, 2005, 18(S1): 82–84. DOI: 10.3969/j.issn.1671-0436.2005.z1.016.
    [18]
    HOLSAPPLE K A. The scaling of impact processes in planetary sciences [J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 333–373. DOI: 10.1146/annurev.ea.21.050193.002001.
    [19]
    闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究 [D]. 北京: 北京理工大学, 2015.

    SHAN Y. Investigation on the mass abrasion and motion of the projectile non-normal penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2015.
    [20]
    DANCYGIER A N, YANKELEVSKY D Z. Effects of reinforced concrete properties on resistance to hard projectile impact [J]. ACI Structural Journal, 1999, 96(2): 259–267.
    [21]
    周宁, 任辉启, 沈兆武, 等. 弹丸侵彻钢筋混凝土的工程解析模型 [J]. 爆炸与冲击, 2007, 27(6): 529–534. DOI: 10.11883/1001-1455(2007)06-0529-06.

    ZHOU N, REN H Q, SHEN Z W, et al. An engineering analytical model for projectiles to penetrate into semi-infinite reinforced concrete targets [J]. Explosion and Shock Waves, 2007, 27(6): 529–534. DOI: 10.11883/1001-1455(2007)06-0529-06.
    [22]
    陈小伟. 穿甲/侵彻问题的若干工程研究进展 [J]. 力学进展, 2009, 39(3): 316–351. DOI: 10.3321/j.issn:1000-0992.2009.03.006.

    CHEN X W. Advances in the penetration/perforation of rigid projectiles [J]. Advances in Mechanics, 2009, 39(3): 316–351. DOI: 10.3321/j.issn:1000-0992.2009.03.006.
    [23]
    王可慧. 高速弹体侵彻混凝土靶研究 [D]. 北京: 北京理工大学, 2011.
    [24]
    柴传国, 皮爱国, 武海军, 等. 卵形弹体侵彻混凝土开坑区侵彻阻力计算 [J]. 爆炸与冲击, 2014, 34(5): 630–635. DOI: 10.11883/1001-1455(2014)05-0630-06.

    CHAI C G, PI A G, WU H J, et al. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete [J]. Explosion and Shock Waves, 2014, 34(5): 630–635. DOI: 10.11883/1001-1455(2014)05-0630-06.
    [25]
    DONALD E G. Impact cratering [C] // The First Lunar & Planetary Science Conference. 1974: 137−175.
    [26]
    TAKAGI Y, MIZUTANI H, KAWAKAMI S I. Impact fragmentation experiments of basalts and pyrophyllites [J]. Icarus, 1984, 59(3): 462–477. DOI: 10.1016/0019-1035(84)90114-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (339) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return