Volume 42 Issue 3
Apr.  2022
Turn off MathJax
Article Contents
JIA Xing, TANG Longhuang, WENG Jidong, MA Heli, TAO Tianjiong, LIU Shenggang, CHEN Long, ZHANG Linwen, WANG Xiang. Microwave velocity interferometry for the parameter diagnosis of the interior ballistic of a two-stage light gas gun or powder gun[J]. Explosion And Shock Waves, 2022, 42(3): 034101. doi: 10.11883/bzycj-2021-0303
Citation: JIA Xing, TANG Longhuang, WENG Jidong, MA Heli, TAO Tianjiong, LIU Shenggang, CHEN Long, ZHANG Linwen, WANG Xiang. Microwave velocity interferometry for the parameter diagnosis of the interior ballistic of a two-stage light gas gun or powder gun[J]. Explosion And Shock Waves, 2022, 42(3): 034101. doi: 10.11883/bzycj-2021-0303

Microwave velocity interferometry for the parameter diagnosis of the interior ballistic of a two-stage light gas gun or powder gun

doi: 10.11883/bzycj-2021-0303
  • Received Date: 2021-07-19
  • Rev Recd Date: 2021-09-08
  • Available Online: 2022-03-11
  • Publish Date: 2022-04-07
  • The measurement of the interior ballistic projectile velocity in a two-stage light gas gun or powder gun and the observation of the state of the precursor gas in the launch tube are very important for the design and calculation of the interior ballistic and for the analysis of the abnormal ballistic. In order to obtain the better results, two microwave interferometers in the Ka-band and X-band were designed by the Dopple principle, since the transmission and reflection characteristics of microwave are related with the caliber of launch tube and objects materials respectively. A combination of the short-time Fourier transform and phase calculation was used to process the interference signal, and then the velocity, acceleration, displacement, projectile bottom pressure and other information were obtained by calculation. Complete interior ballistic data for a two-stage light gas gun and a high-speed powder gun were obtained experimentally. The difference in the projectile velocity measured by the microwave interferometer and the optical beam blocking (OBB) device is less than 0.5%. Moreover, it was demonstrated in our experiments that under some conditions, shock waves may cause premature breaking of the diaphragm in the high pressure section, which results in the projectile having a secondary loading at high pressure, and then becoming fragmented with a probability. In addition, based on the reflection and transmission characteristics of the ionized gas at different microwave wavelengths, the velocity of the precursor H2 gas in the launch tube of the two-stage light gas gun was measured using the X-band microwave interferometer for the first time, which can provide data for studying the temperature, pressure, ionization and other states of the high-speed ionized gas.
  • loading
  • [1]
    王金贵. 气体炮原理及技术 [M]. 北京: 国防工业出版社, 2001: 71−94.
    [2]
    杨敏涛. 微波干涉仪在武器研制中的应用 [J]. 火炮发射与控制学报, 1996(4): 23–27.

    YANG M T. Application of microwave interferometer in the armament research [J]. Journal of Gun Launch & Control, 1996(4): 23–27.
    [3]
    王东方, 肖伟科, 庞宝君. NASA二级轻气炮设备简介 [J]. 实验流体力学, 2014, 28(4): 99–104. DOI: 10.11729/syltlx2014pz02.

    WANG D F, XIAO W K, PANG B J. A brief introduction on NASA’s two stage light gas guns [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4): 99–104. DOI: 10.11729/syltlx2014pz02.
    [4]
    王为, 王翔. 二级轻气炮发射过程中前冲气体的初步研究 [J]. 高压物理学报, 2004, 18(1): 94–96. DOI: 10.11858/gywlxb.2004.01.017.

    WANG W, WANG X. Measurement of the precursor gas accompanied with the launch of two-stage gas gun [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 94–96. DOI: 10.11858/gywlxb.2004.01.017.
    [5]
    杨继运. 二级轻气炮模拟空间碎片超高速碰撞试验技术 [J]. 航天器环境工程, 2006, 23(1): 16–22. DOI: 10.3969/j.issn.1673-1379.2006.01.003.

    YANG J Y. Simulation of space debris hypervelocity impact using two stage light gas gun [J]. Spacecraft Environment Engineering, 2006, 23(1): 16–22. DOI: 10.3969/j.issn.1673-1379.2006.01.003.
    [6]
    王为, 陈宏, 王翔. 紧凑型全光纤内弹道弹速测量系统 [J]. 应用光学, 2011, 32(4): 723–729. DOI: 10.3969/j.issn.1002-2082.2011.04.026.

    WANG W, CHEN H, WANG X. Compact all fiber interior ballistic projectile velocity measurement system [J]. Journal of Applied Optics, 2011, 32(4): 723–729. DOI: 10.3969/j.issn.1002-2082.2011.04.026.
    [7]
    WENG J D, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101. DOI: 10.1063/1.2335948.
    [8]
    王德田, 彭其先, 刘俊, 等. 激光干涉测速技术在内弹道弹丸速度测量中的应用研究 [J]. 高压物理学报, 2011, 25(2): 133–137. DOI: 10.11858/gywlxb.2011.02.007.

    WANG D T, PENG Q X, LIU J, et al. Application of laser velocity interferometry in interior ballistic projectile velocity measurement [J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 133–137. DOI: 10.11858/gywlxb.2011.02.007.
    [9]
    彭其先, 蒙建华, 刘俊, 等. 激光干涉测速技术在火炮内弹道研究中的应用 [J]. 弹道学报, 2008, 20(3): 96–99.

    PENG Q X, MENG J H, LIU J, et al. Laser velocity interferometry for interior ballistic research [J]. Journal of Ballistics, 2008, 20(3): 96–99.
    [10]
    陶天炯, 王翔, 陈宏, 等. 频率混叠在气体炮内弹道速度测量中的应用 [J]. 高压物理学报, 2013, 27(4): 523–527. DOI: 10.11858/gywlxb.2013.04.009.

    TAO T J, WANG X, CHEN H, et al. Frequency aliasing used in interior ballistic velocity measurements for gas guns [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 523–527. DOI: 10.11858/gywlxb.2013.04.009.
    [11]
    BEL'SKII V M, MIKHAILOV A L, RODIONOV A V, et al. Microwave diagnostics of shock-wave and detonation processes [J]. Combustion, Explosion, and Shock Waves, 2011, 47(6): 639–650. DOI: 10.1134/S0010508211060037.
    [12]
    TASKER D G, BAE Y K, JOHNSON C, et al. Voitenko experiments with novel diagnostics detect velocities of 89 km/s [J]. International Journal of Impact Engineering, 2020, 135: 103406. DOI: 10.1016/j.ijimpeng.2019.103406.
    [13]
    ELIA T, CHUZEVILLE V, BAUDIN G, et al. Review of the wedge test and single curve initiation principle applied to aluminized high explosives [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(10): 1541–1553. DOI: 10.1002/prep.201900300.
    [14]
    MAYS R O, TRINGE J W, SOUERS P C, et al. Experimental and computational investigation of microwave interferometry for detonation front characterization [J]. AIP Conference Proceedings, 2018, 1979(1): 160016. DOI: 10.1063/1.5045015.
    [15]
    张玉成, 张江波, 严文荣, 等. 基于弹丸膛内速度微波测量的发射药燃烧规律 [J]. 火炸药学报, 2010, 33(4): 74–77. DOI: 10.3969/j.issn.1007-7812.2010.04.019.

    ZHANG Y C, ZHANG J B, YAN W R, et al. Burning rules of gun propellant in powder chamber based on bullet velocity measurement with microwave interferometer [J]. Chinese Journal of Explosives & Propellants, 2010, 33(4): 74–77. DOI: 10.3969/j.issn.1007-7812.2010.04.019.
    [16]
    CHEN X H, ZENG X L, FAN D, et al. Note: phase retrieval method for analyzing single-phase displacement interferometry data [J]. Review of Scientific Instruments, 2014, 85(2): 026016. DOI: 10.1063/1.4865113.
    [17]
    孔伟, 肖剑, 常增田, 等. 基于相位解卷绕的膛内弹丸运动信号处理 [J]. 弹箭与制导学报, 2012, 32(2): 189–192. DOI: 10.3969/j.issn.1673-9728.2012.02.052.

    KONG W, XIAO J, CHANG Z T, et al. Signal processing of projectile moving in-bore based on phase unwrapping algorithm [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2): 189–192. DOI: 10.3969/j.issn.1673-9728.2012.02.052.
    [18]
    KITTELL D E, MARES J O, SON S F. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry [J]. Review of Scientific Instruments, 2015, 86(4): 044705. DOI: 10.1063/1.4916733.
    [19]
    TRINGE J W, KANE R J, VANDERALL K S, et al. Microwave interferometry for understanding deflagration-to-detonation and shock-to-detonation transitions in porous explosives [C] // 15th International Detonation Symposium. San Francisco: LLNL, 2014: LLNL-CONF-656294.
    [20]
    HALOUA F, BROUILLETTE M, LIENHART V, et al. Characteristics of unstable detonations near extinction limits [J]. Combustion and Flame, 2000, 122(4): 422–438. DOI: 10.1016/S0010-2180(00)00134-6.
    [21]
    KRALL A D, GLANCY B C, SANDUSKY H W. Microwave interferometry of shock waves. Ⅰ. unreacting porous media [J]. Journal of Applied Physics, 1993, 74(10): 6322–6327. DOI: 10.1063/1.355154.
    [22]
    DAN L, GUO L X, LI J T. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization [J]. Physics of Plasmas, 2018, 25(1): 013707. DOI: 10.1063/1.5003717.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (251) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return