Citation: | JIA Xing, TANG Longhuang, WENG Jidong, MA Heli, TAO Tianjiong, LIU Shenggang, CHEN Long, ZHANG Linwen, WANG Xiang. Microwave velocity interferometry for the parameter diagnosis of the interior ballistic of a two-stage light gas gun or powder gun[J]. Explosion And Shock Waves, 2022, 42(3): 034101. doi: 10.11883/bzycj-2021-0303 |
[1] |
王金贵. 气体炮原理及技术 [M]. 北京: 国防工业出版社, 2001: 71−94.
|
[2] |
杨敏涛. 微波干涉仪在武器研制中的应用 [J]. 火炮发射与控制学报, 1996(4): 23–27.
YANG M T. Application of microwave interferometer in the armament research [J]. Journal of Gun Launch & Control, 1996(4): 23–27.
|
[3] |
王东方, 肖伟科, 庞宝君. NASA二级轻气炮设备简介 [J]. 实验流体力学, 2014, 28(4): 99–104. DOI: 10.11729/syltlx2014pz02.
WANG D F, XIAO W K, PANG B J. A brief introduction on NASA’s two stage light gas guns [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4): 99–104. DOI: 10.11729/syltlx2014pz02.
|
[4] |
王为, 王翔. 二级轻气炮发射过程中前冲气体的初步研究 [J]. 高压物理学报, 2004, 18(1): 94–96. DOI: 10.11858/gywlxb.2004.01.017.
WANG W, WANG X. Measurement of the precursor gas accompanied with the launch of two-stage gas gun [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 94–96. DOI: 10.11858/gywlxb.2004.01.017.
|
[5] |
杨继运. 二级轻气炮模拟空间碎片超高速碰撞试验技术 [J]. 航天器环境工程, 2006, 23(1): 16–22. DOI: 10.3969/j.issn.1673-1379.2006.01.003.
YANG J Y. Simulation of space debris hypervelocity impact using two stage light gas gun [J]. Spacecraft Environment Engineering, 2006, 23(1): 16–22. DOI: 10.3969/j.issn.1673-1379.2006.01.003.
|
[6] |
王为, 陈宏, 王翔. 紧凑型全光纤内弹道弹速测量系统 [J]. 应用光学, 2011, 32(4): 723–729. DOI: 10.3969/j.issn.1002-2082.2011.04.026.
WANG W, CHEN H, WANG X. Compact all fiber interior ballistic projectile velocity measurement system [J]. Journal of Applied Optics, 2011, 32(4): 723–729. DOI: 10.3969/j.issn.1002-2082.2011.04.026.
|
[7] |
WENG J D, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101. DOI: 10.1063/1.2335948.
|
[8] |
王德田, 彭其先, 刘俊, 等. 激光干涉测速技术在内弹道弹丸速度测量中的应用研究 [J]. 高压物理学报, 2011, 25(2): 133–137. DOI: 10.11858/gywlxb.2011.02.007.
WANG D T, PENG Q X, LIU J, et al. Application of laser velocity interferometry in interior ballistic projectile velocity measurement [J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 133–137. DOI: 10.11858/gywlxb.2011.02.007.
|
[9] |
彭其先, 蒙建华, 刘俊, 等. 激光干涉测速技术在火炮内弹道研究中的应用 [J]. 弹道学报, 2008, 20(3): 96–99.
PENG Q X, MENG J H, LIU J, et al. Laser velocity interferometry for interior ballistic research [J]. Journal of Ballistics, 2008, 20(3): 96–99.
|
[10] |
陶天炯, 王翔, 陈宏, 等. 频率混叠在气体炮内弹道速度测量中的应用 [J]. 高压物理学报, 2013, 27(4): 523–527. DOI: 10.11858/gywlxb.2013.04.009.
TAO T J, WANG X, CHEN H, et al. Frequency aliasing used in interior ballistic velocity measurements for gas guns [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 523–527. DOI: 10.11858/gywlxb.2013.04.009.
|
[11] |
BEL'SKII V M, MIKHAILOV A L, RODIONOV A V, et al. Microwave diagnostics of shock-wave and detonation processes [J]. Combustion, Explosion, and Shock Waves, 2011, 47(6): 639–650. DOI: 10.1134/S0010508211060037.
|
[12] |
TASKER D G, BAE Y K, JOHNSON C, et al. Voitenko experiments with novel diagnostics detect velocities of 89 km/s [J]. International Journal of Impact Engineering, 2020, 135: 103406. DOI: 10.1016/j.ijimpeng.2019.103406.
|
[13] |
ELIA T, CHUZEVILLE V, BAUDIN G, et al. Review of the wedge test and single curve initiation principle applied to aluminized high explosives [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(10): 1541–1553. DOI: 10.1002/prep.201900300.
|
[14] |
MAYS R O, TRINGE J W, SOUERS P C, et al. Experimental and computational investigation of microwave interferometry for detonation front characterization [J]. AIP Conference Proceedings, 2018, 1979(1): 160016. DOI: 10.1063/1.5045015.
|
[15] |
张玉成, 张江波, 严文荣, 等. 基于弹丸膛内速度微波测量的发射药燃烧规律 [J]. 火炸药学报, 2010, 33(4): 74–77. DOI: 10.3969/j.issn.1007-7812.2010.04.019.
ZHANG Y C, ZHANG J B, YAN W R, et al. Burning rules of gun propellant in powder chamber based on bullet velocity measurement with microwave interferometer [J]. Chinese Journal of Explosives & Propellants, 2010, 33(4): 74–77. DOI: 10.3969/j.issn.1007-7812.2010.04.019.
|
[16] |
CHEN X H, ZENG X L, FAN D, et al. Note: phase retrieval method for analyzing single-phase displacement interferometry data [J]. Review of Scientific Instruments, 2014, 85(2): 026016. DOI: 10.1063/1.4865113.
|
[17] |
孔伟, 肖剑, 常增田, 等. 基于相位解卷绕的膛内弹丸运动信号处理 [J]. 弹箭与制导学报, 2012, 32(2): 189–192. DOI: 10.3969/j.issn.1673-9728.2012.02.052.
KONG W, XIAO J, CHANG Z T, et al. Signal processing of projectile moving in-bore based on phase unwrapping algorithm [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2): 189–192. DOI: 10.3969/j.issn.1673-9728.2012.02.052.
|
[18] |
KITTELL D E, MARES J O, SON S F. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry [J]. Review of Scientific Instruments, 2015, 86(4): 044705. DOI: 10.1063/1.4916733.
|
[19] |
TRINGE J W, KANE R J, VANDERALL K S, et al. Microwave interferometry for understanding deflagration-to-detonation and shock-to-detonation transitions in porous explosives [C] // 15th International Detonation Symposium. San Francisco: LLNL, 2014: LLNL-CONF-656294.
|
[20] |
HALOUA F, BROUILLETTE M, LIENHART V, et al. Characteristics of unstable detonations near extinction limits [J]. Combustion and Flame, 2000, 122(4): 422–438. DOI: 10.1016/S0010-2180(00)00134-6.
|
[21] |
KRALL A D, GLANCY B C, SANDUSKY H W. Microwave interferometry of shock waves. Ⅰ. unreacting porous media [J]. Journal of Applied Physics, 1993, 74(10): 6322–6327. DOI: 10.1063/1.355154.
|
[22] |
DAN L, GUO L X, LI J T. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization [J]. Physics of Plasmas, 2018, 25(1): 013707. DOI: 10.1063/1.5003717.
|