Citation: | SUN Jinshan, XIE Xianqi, JIA Yongsheng, YAO Yingkang, LIU Changbang, HAN Chuanwei, WANG Honggang, HUANG Xiaowu. Prediction of sinking down and early break in the air of reinforced concrete chimney during blasting demolition[J]. Explosion And Shock Waves, 2022, 42(8): 085202. doi: 10.11883/bzycj-2021-0316 |
[1] |
褚怀保, 徐鹏飞, 叶红宇, 等. 钢筋混凝土烟囱爆破拆除倒塌与受力过程研究 [J]. 振动与冲击, 2015, 34(22): 183–186,198. DOI: 10.13465/j.cnki.jvs.2015.22.032.
CHU H B, XU P F, YE H Y, et al. Collapse process and load-bearing process of reinforced concrete chimney during blasting demolition [J]. Journal of Vibration and Shock, 2015, 34(22): 183–186,198. DOI: 10.13465/j.cnki.jvs.2015.22.032.
|
[2] |
郑炳旭, 魏晓林, 陈庆寿. 钢筋混凝土高烟囱爆破切口支撑部破坏观测研究 [J]. 岩石力学与工程学报, 2006, 25(S2): 3513–3517. DOI: 10.3321/j.issn:1000-6915.2006.z2.026.
ZHENG B X, WEI X L, CHEN Q S. Study on damage surveying of cutting-support of high reinforced concrete chimney demolished by blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3513–3517. DOI: 10.3321/j.issn:1000-6915.2006.z2.026.
|
[3] |
郑炳旭, 魏晓林, 陈庆寿. 钢筋混凝土高烟囱切口支撑部失稳力学分析 [J]. 岩石力学与工程学报, 2007, 26(S1): 3348–3354. DOI: 10.3321/j.issn:1000-6915.2007.z1.114.
ZHENG B X, WEI X L, CHEN Q S. Mechanical analysis of cutting-support destabilization of high reinforced concrete chimney [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3348–3354. DOI: 10.3321/j.issn:1000-6915.2007.z1.114.
|
[4] |
徐鹏飞, 刘殿书, 张英才. 烟囱高位组合切口定向爆破倒塌过程数值研究 [J]. 振动与冲击, 2017, 36(15): 265–270. DOI: 10.13465/j.cnki.jvs.2017.15.040.
XU P F, LIU D S, ZHANG Y C. Numerical study on the directional blasting collapse process of chimney with high combined incision [J]. Journal of Vibration and Shock, 2017, 36(15): 265–270. DOI: 10.13465/j.cnki.jvs.2017.15.040.
|
[5] |
言志信, 叶振辉, 刘培林, 等. 钢筋混凝土高烟囱定向爆破拆除倒塌过程研究 [J]. 振动与冲击, 2011, 30(9): 197–201. DOI: 10.3969/j.issn.1000-3835.2011.09.041.
YAN Z X, YE Z H, LIU P L, et al. Collapsing process of high reinforced concrete chimney in blasting demolition [J]. Journal of Vibration and Shock, 2011, 30(9): 197–201. DOI: 10.3969/j.issn.1000-3835.2011.09.041.
|
[6] |
杨建华, 马玉岩, 卢文波, 等. 高烟囱爆破拆除倾倒折断力学分析 [J]. 岩土力学, 2011, 32(2): 459–464. DOI: 10.3969/j.issn.1000-7598.2011.02.023.
YANG J H, MA Y Y, LU W B, et al. Analysis of fracture mechanics for falling tall chimneys during demolition blasting [J]. Rock and Soil Mechanics, 2011, 32(2): 459–464. DOI: 10.3969/j.issn.1000-7598.2011.02.023.
|
[7] |
言志信, 叶振辉, 刘培林. 烟囱定向爆破拆除倒塌过程 [J]. 爆炸与冲击, 2010, 30(6): 607–613. DOI: 10.11883/1001-1455(2010)06-0607-07.
YAN Z X, YE Z H, LIU P L. Collapsing process of chimney demolition by directional blasting [J]. Explosion and Shock Waves, 2010, 30(6): 607–613. DOI: 10.11883/1001-1455(2010)06-0607-07.
|
[8] |
唐海, 梁开水, 张成良. 烟囱爆破倾倒折断的力学浅析 [J]. 爆破, 2003, 20(1): 9–11. DOI: 10.3963/j.issn.1001-487X.2003.01.003.
TANG H, LIANG K S, ZHANG C L. Mechanics analysis of fall-down process of chimney by blasting demolition [J]. Blasting, 2003, 20(1): 9–11. DOI: 10.3963/j.issn.1001-487X.2003.01.003.
|
[9] |
侯吉旋, 李志昂, 郭兴, 等. 质量非均匀分布的烟囱在倾倒过程中的力学分析 [J]. 大学物理, 2017, 36(6): 50–51,55. DOI: 10.16854/j.cnki.1000-0712.2017.06.013.
HOU J X, LI Z A, GUO X, et al. Mechanical analysis of the non-uniform falling chimney [J]. College Physics, 2017, 36(6): 50–51,55. DOI: 10.16854/j.cnki.1000-0712.2017.06.013.
|
[10] |
王云剑. 烟囱纵向冲击断裂试验与分析 [J]. 力学与实践, 2000, 22(2): 41–43. DOI: 10.3969/j.issn.1000-0879.2000.02.012.
WANG Y J. Longitudinal shock test and analysis on chimney models [J]. Mechanics in Engineering, 2000, 22(2): 41–43. DOI: 10.3969/j.issn.1000-0879.2000.02.012.
|
[11] |
PALLARÉS F J, AGÜERO A, MARTÍN M. Seismic behaviour of industrial masonry chimneys [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2076–2090. DOI: 10.1016/j.ijsolstr.2005.06.014.
|
[12] |
WOLF J P, SKRIKERUD P E. Collapse of chimney caused by earthquake or by aircraft impingement with subsequent impact on reactor building [J]. Nuclear Engineering and Design, 1979, 51(3): 453–472. DOI: 10.1016/0029-5493(79)90133-X.
|
[13] |
WILSON J L. Earthquake response of tall reinforced concrete chimneys [J]. Engineering Structures, 2003, 25(1): 11–24. DOI: 10.1016/S0141-0296(02)00098-6.
|
[14] |
HUANG W, GOULD P L. 3-D pushover analysis of a collapsed reinforced concrete chimney [J]. Finite Elements in Analysis and Design, 2007, 43(11/12): 879–887. DOI: 10.1016/j.finel.2007.05.005.
|
[15] |
MINGHINI F, MILANI G, TRALLI A. Seismic risk assessment of a 50m high masonry chimney using advanced analysis techniques [J]. Engineering Structures, 2014, 69: 255–270. DOI: 10.1016/j.engstruct.2014.03.028.
|
[1] | JI Yuguo, ZHANG Guokai, LI Gan, DENG Shuxin, YAO Jian, LI Jie, WANG Mingyang, HE Yong. Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors[J]. Explosion And Shock Waves, 2024, 44(3): 032301. doi: 10.11883/bzycj-2023-0011 |
[2] | LI Zihan, CHENG Yangfan, WANG Hao, ZHU Shoujun, SHEN Zhaowu. Influences of negative pressure conditions on the explosion temperature field and harmful effects of emulsion explosive[J]. Explosion And Shock Waves, 2023, 43(8): 082301. doi: 10.11883/bzycj-2023-0106 |
[3] | NI Hao, YANG Renshu, TAN Zhuoying, DING Chenxi, LIN Hai, WANG Yu, WU Haotian. An experimental study on temperature field evolution of carbon dioxide blasting jets[J]. Explosion And Shock Waves, 2023, 43(12): 123902. doi: 10.11883/bzycj-2023-0227 |
[4] | ZHANG Qiwei, CHENG Yangfan, XIA Yu, WANG Zhonghua, WANG Quan, SHEN Zhaowu. Application of colorimetric pyrometer in the measurement of transient explosion temperature[J]. Explosion And Shock Waves, 2022, 42(11): 114101. doi: 10.11883/bzycj-2021-0477 |
[5] | Hu Hongwei, Yan Jiajia, Chen Lang, Guo Wei, Song Pu. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion And Shock Waves, 2017, 37(1): 157-161. doi: 10.11883/1001-1455(2017)01-0157-05 |
[6] | Lin Moujin, Cui Xiaorong, Ma Honghao, Zheng Bingxu, Jia Hu. Air blast performance of RDX-based aluminum fiber explosive[J]. Explosion And Shock Waves, 2016, 36(2): 230-235. doi: 10.11883/1001-1455(2016)02-0230-06 |
[7] | Zhao Xinying, Wang Boliang, Li Xi. Shockwave characteristics of thermobaric explosive in free-field explosion[J]. Explosion And Shock Waves, 2016, 36(1): 38-42. doi: 10.11883/1001-1455(2016)01-0038-05 |
[8] | Huang Yafeng, Tian Xuan, Feng Bo, Wang Xiaofeng. Experimental study on explosion performance of thermobaric explosive[J]. Explosion And Shock Waves, 2016, 36(4): 573-576. doi: 10.11883/1001-1455(2016)04-0573-04 |
[9] | Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06 |
[10] | Li Xiao-jie, Sun Wei, Yan Hong-hao, Wang Xiao-hong. Underwater explosive welding and compaction[J]. Explosion And Shock Waves, 2013, 33(1): 103-107. doi: 10.11883/1001-1455(2013)01-0103-05 |
[11] | HUANG Ju, WANG Bo-liang, ZHONG Qian, HUIJun-ming. Apreliminaryinvestigationonenergyoutputstructureof athermobaricexplosive[J]. Explosion And Shock Waves, 2012, 32(2): 164-168. doi: 10.11883/1001-1455(2012)02-0164-05 |
[12] | ZHANG Bao-guo, LIN Ke-ling, TIAN Xin-li, XUE Chun-fang, LI Fu-qiang. NumericalsimulationoftemperaturefieldforAl2O3ceramics duringmicro-detonationofstrikingarcmachining[J]. Explosion And Shock Waves, 2012, 32(2): 129-135. doi: 10.11883/1001-1455(2012)02-0129-07 |
[13] | ZHONG Qian, WANG Bo-liang, HUNAG Ju, FANG Ying-ying, HUI Jun-ming. Applicationofadynamicmodeltothermaldamageestimation ofthermobaricexplosives[J]. Explosion And Shock Waves, 2011, 31(5): 528-562. doi: 10.11883/1001-1455(2011)05-0528-05 |
[14] | LIAO Xue-yan, SHEN Zhao-wu, YAO Bao-xue, DONG Shu-nan, MA Hong-hao, JIANG Yao-gang. Energyoutputandmechanicalstrengthof aluminum-fibre-reinforcedcompositeexplosives[J]. Explosion And Shock Waves, 2010, 30(4): 424-428. doi: 10.11883/1001-1455(2010)04-0424-05 |
[15] | WU Fei-peng, PU Chun-sheng, WU Bo. Adynamicmodelofthepressurizedliquidcolumnmovement inthehighenergygasfracturingprocess[J]. Explosion And Shock Waves, 2010, 30(6): 633-640. doi: 10.11883/1001-1455(2010)06-0633-08 |
[16] | LI Run-zhi. Numericalsimulationofcoaldustexplosioninducedbygasexplosion[J]. Explosion And Shock Waves, 2010, 30(5): 529-534. doi: 10.11883/1001-1455(2010)05-0529-06 |
[17] | ZHANG A-man, YAO Xiong-liang, WEN Xue-you. Physical behaviors of an underwater explosion bubble in a free field[J]. Explosion And Shock Waves, 2008, 28(5): 391-400. doi: 10.11883/1001-1455(2008)05-0391-10 |
[18] | YIN Yi-hui, WANG Wei-ping, CHEN Yu-ze. Analytical solutions of 3D transient temperature field in a multilayer cylinder irradiated by high power laser beam[J]. Explosion And Shock Waves, 2008, 28(1): 44-49. doi: 10.11883/1001-1455(2008)01-0044-06 |
[19] | ZHENG Bo, CHEN Li, DING Yan-sheng, LIU Wei, LIU Xue-zhu, ZHU Hong-rui, WANG Zhi-fang. Dispersal process of explosion production of thermobaric explosive[J]. Explosion And Shock Waves, 2008, 28(5): 433-437. doi: 10.11883/1001-1455(2008)05-0433-05 |
[20] | JIN Peng-gang, CHANG Hai, CHEN Zhi-qun. Studies on kinetics and mechanisms of thermal decomposition of 1,1-diamino-2,2-dinitroethylene (FOX-7)[J]. Explosion And Shock Waves, 2006, 26(6): 528-531. doi: 10.11883/1001-1455(2006)06-0528-04 |