Citation: | WANG Jingui, HU Chao, LUO Feiyun, ZHANG Su. Experimental study on the effects of venting area on the structural response of vessel walls to methane-air mixture deflagration[J]. Explosion And Shock Waves, 2022, 42(4): 045102. doi: 10.11883/bzycj-2021-0327 |
[1] |
段佳, 崔东明, 董刚. 甲烷-空气预混气体泄爆过程的数值模拟与实验验证 [J]. 南京理工大学学报(自然科学版), 2006(1): 26–29. DOI: 10.14177/j.cnki.32-1397n.2006.01.007.
DUAN J, CUI D M, DONG G. Numerical simulation and experimental verification of methane-air premixed gas venting process [J]. Journal of the Nanjing University of Science and Technology (Science Edition), 2006(1): 26–29. DOI: 10.14177/j.cnki.32-1397n.2006.01.007.
|
[2] |
LI J D, HAO H. Numerical and analytical prediction of pressure and impulse from vented gas explosion in large cylindrical tanks [J]. Process Safety and Environmental Protection, 2019, 127: 226–244. DOI: 10.1016/j.psep.2019.05.019.
|
[3] |
王发辉, 孙悦, 温小萍, 等. 富氧条件下不同泄爆面积对CH4燃烧诱导快速相变的影响 [J]. 安全与环境学报, 2021, 21(1): 109–116. DOI: 10.13637/j.issn.1009-6094.2019.1238.
WANG F H, SUI Y, WEN X P, et al. Effect of different venting areas on combustion-induced rapid phase transition of CH4 under oxygen-enriched conditions [J]. Journal of Safety and Environment, 2021, 21(1): 109–116. DOI: 10.13637/j.issn.1009-6094.2019.1238.
|
[4] |
董冰岩, 彭旭. 泄爆面积对柱形容器泄爆过程压力影响 [J]. 工业安全与环保, 2012, 38(12): 47–51. DOI: 10.3969/j.issn.1001-425X.2012.12.016.
DONG B Y, PENG X. Influence of venting area on pressure of cylindrical vessel during venting process [J]. Industrial Safety and Environmental Protection, 2012, 38(12): 47–51. DOI: 10.3969/j.issn.1001-425X.2012.12.016.
|
[5] |
LIU W, GUO J, ZHANG J Q, et al. Effect of vent area on vented deflagration of hydrogen-methane-air mixtures [J]. International Journal of Hydrogen Energy, 2021, 41(9): 6992–6999. DOI: 10.1016/J.IJHYDENE.2020.11.123.
|
[6] |
COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions [J]. Combustion and Flame, 1986, 65(1): 1–14. DOI: 10.1016/0010-2180(86)90067-2.
|
[7] |
TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 35. DOI: 10.1016/j.jlp.2015.04.014.
|
[8] |
唐泽斯, 郭进, 张苏, 等. 甲烷-空气预混气体泄爆作用下容器振动响应特性 [J]. 福州大学学报(自然科学版), 2020, 48(2): 263–268.
TANG Z S, GUO J, ZHANG S, et al. Characteristics of vessel vibration response to methane-air premixed gas venting [J]. Journal of Fuzhou University (Natural Science), 2020, 48(2): 263–268.
|
[9] |
HUNG C F, LIN B J, HWANG FUU J J, et al. Dynamic response of cylindrical shell structures subjected to underwater explosion [J]. Ocean Engineering, 2009, 36(8). DOI: 10.1016/j.oceaneng.2009.02.001.
|
[10] |
王敏, 文鹤鸣. 碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟 [J]. 爆炸与冲击, 2022, 42(3): 033102. DOI: 10.11883/bzycj-2021-0050.
WANG M, WEN H M. Numerical simulation of low velocity impact response and failure of carbon nanotube/carbon fiber reinforced plastic [J]. Explosion and Shock Waves, 2022, 42(3): 033102. DOI: 10.11883/bzycj-2021-0050.
|
[11] |
MA H Y, LONG Y, LI X H, et al. Study on vibration characteristics of natural gas pipeline explosion based on improved MP-WVD algorithm [J]. Shock and Vibration, 2018(6): 1–13. DOI: 10.1155/2018/8969675.
|
[12] |
WANG Q, GONG J, LI Z M, et al. Vibration characteristics analysis of composite double-layer explosive vessel shell subjected to explosion loading [J]. Shock and Vibration, 2018(7): 1–10. DOI: 10.1155/2018/3714798.
|
[13] |
PINI T, HANSSEN A, SCHIAVETTI M, et al. Small scale experiments and Fe model validation of structural response during hydrogen vented deflagrations [J]. International Journal of Hydrogen Energy, 2019, 44(17): 9063–9070. DOI: 10.1016/j.ijhydene.2018.05.052.
|
[14] |
ATANGA G, LAKSHMIPATHY S, SKJOLD T, et al. Structural response for vented hydrogen deflagrations: coupling CFD and FE tools [J]. International Journal of Hydrogen Energy, 2019, 44(17): 8893–8903. DOI: 10.1016/j.ijhydene.2018.08.085.
|
[15] |
WANG J G, LUO F Y, GUO J, et al. Structural response for vented methane–air deflagrations: effects of volumetric blockage ratio [J]. Journal of Loss Prevention in the Process Industries, 2020, 66: 104172. DOI: 10.1016/J.JLP.2020.104172.
|
[16] |
WANG C H, LI J L, TANG Z S, et al. Flame propagation in methane-air mixtures with transverse concentration gradients in horizontal duct [J]. Fuel, 2020, 265(4): 116926. DOI: 10.1016/j.fuel.2019.116926.
|
[17] |
MCCANN D P J, THOMAS G, EDWARDS D H. Gas dynamics of vented explosions: Part Ⅰ: experimental studies [J]. Combustion and Flame, 1985, 59(3): 233–250.
|
[18] |
BAUWENS C R, CHAFFEE J, DOROFEEV S B. Effect of instabilities and acoustics on pressure generated in vented propane air explosions[C]// 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, 2009.
|
[19] |
BAUWENS C R, DOROFEEV S B. Effect of initial turbulence on vented explosion overpressures from lean hydrogen–air deflagrations [J]. International Journal of Hydrogen Energy, 2014, 39(35): 20509. DOI: 10.1016/j.ijhydene.2014.04.118.
|
[20] |
CHAO J, BAUWENS C R, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions [J]. Proceedings of the Combustion Institute, 2010, 33(2): 2367–2374. DOI: 10.1016/j.proci.2010.06.144.
|
[21] |
LIANG Z, CLOUTHIER T, MACCOY R, et al. Overview of hydrogen combustion experiments performed in a large-scale vented vessel at Canadian Nuclear Laboratories [J]. Nuclear Engineering and Design, 2018, 330: 272–281. DOI: 10.1016/j.nucengdes.2018.02.002.
|
[22] |
SOLBERG D M, PAPPAS J A, SKRAMSTSD E. Observations of flame instabilities in large scale vented gas explosions [J]. Eighteenth Symposium (International) on Combustion, 1980, 18(1): 1607–1617. DOI: 10.1016/S0082-0784(81)80164-6.
|
[23] |
LI H W, TANG Z S, LI J J, et al. Investigation of vented hydrogen-air deflagrations in a congested vessel [J]. Process Safety and Environment Protection, 2019, 129: 196–201. DOI: 10.1016/j.psep.2019.07.009.
|
[24] |
DHAKAL R P, PAN T C. Response characteristics of structures subjected to blasting-induced ground motion [J]. International Journal of Impact Engineering, 2003, 28(8): 813–28. DOI: 10.1016/S0734-743X(02)00157-4.
|
[25] |
郝腾腾. 氢气泄爆作用下超压荷载及结构动力响应规律研究[D]. 合肥: 合肥工业大学, 2020: 40−41. DOI: 10.27101/d.cnki.ghfgu.2020.001735.
|
[26] |
汪兴. 细长方形容器内障碍物对氢泄爆特性影响研究[D]. 合肥: 合肥工业大学, 2019: 39−41.
|
[27] |
RUI S C, WANG Q, CHEN F, et al. Effect of vent area on the vented methane-air deflagrations in a 1 m3 rectangular vessel with and without obstacles [J]. Journal of Loss Prevention in the Process Industries, 2021, 74(1): 104642. DOI: 10.1016/j.jlp.2021.104642.
|
[28] |
BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane–air mixtures [J]. Fuel, 2016, 175(7): 40–48. DOI: 10.1016/j.fuel.2016.01.084.
|
[29] |
郝腾腾, 王昌建, 颜王吉, 等. 氢气泄爆作用下结构动力响应特性研究 [J]. 爆炸与冲击, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
HAO T T, WANG C J, YAN W J, et al. Study on dynamic response characteristics of structures under hydrogen venting [J]. Explosion and Shock Waves, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
|
[30] |
BAUWENS C, CHAFFEE J, DOROFEEV S. Experimental and numerical study of methane–air deflagrations in a vented enclosure[C]// 9th International Symposium on Fire Safety Science. 2008: 1043−1054. DOI: 10.3801/IAFSS.FSS.9-1043.
|
[31] |
VAN WINGERDEN C J M, ZEEUWEN J P. On the role of acoustically driven flame instabilities in vented gas explosions and their elimination [J]. Combustion and Flame, 1983, 51: 109–111. DOI: 10.1016/0010-2180(83)90088-3.
|