Citation: | WANG Kailei, LI Mingjing, DONG Leiting. Simulation on penetration of a 12.7-mm projectile into steel targets with different strengths[J]. Explosion And Shock Waves, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336 |
[1] |
DEY S, BØRVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: an experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701–6723. DOI: 10.1016/j.ijsolstr.2007.03.005.
|
[2] |
FLORES-JOHNSON E A, SALEH M, EDWARDS L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile [J]. International Journal of Impact Engineering, 2011, 38(12): 1022–1032. DOI: 10.1016/j.ijimpeng.2011.08.005.
|
[3] |
GAO G H, ZHANG H, GUI X L, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: the great potential of ultrafine filmy retained austenite [J]. Acta Materialia, 2014, 76: 425–433. DOI: 10.1016/j.actamat.2014.05.055.
|
[4] |
CHANG Z Y, LI Y J, WU D. Enhanced ductility and toughness in 2000 MPa grade press hardening steels by auto-tempering [J]. Materials Science and Engineering: A, 2020, 784: 139342. DOI: 10.1016/j.msea.2020.139342.
|
[5] |
SOURMAIL T, CABALLERO F G, GARCIA-MATEO C, et al. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications [J]. Materials Science and Technology, 2013, 29(10): 1166–1173. DOI: 10.1179/1743284713Y.0000000242.
|
[6] |
FRAS T, MURZYN A, PAWLOWSKI P. Defeat mechanisms provided by slotted add-on bainitic plates against small-calibre 7.62mm×51 AP projectiles [J]. International Journal of Impact Engineering, 2017, 103: 241–253. DOI: 10.1016/j.ijimpeng.2017.01.015.
|
[7] |
KILIC N, BEDIR S, ERDIK A, et al. Ballistic behavior of high hardness perforated armor plates against 7.62-mm armor piercing projectile [J]. Materials and Design, 2014, 63: 427–438. DOI: 10.1016/j.matdes.2014.06.030.
|
[8] |
魏刚. 金属动能弹变形与断裂特性及其机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014: 142–146. DOI: 10.7666/d.D593970.
WEI Gang. Investigation of deformation and fracture behavior associated mechanisms of the metal kinetic energy projeciles [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2014: 142–146. DOI: 10.7666/d.D593970.
|
[9] |
赵太勇, 王维占, 赵军强, 等. 12.7 mm动能弹侵彻装甲钢板的结构响应特性研究 [J]. 兵器装备工程学报, 2020, 41(10): 146–149. DOI: 10.11809/bqzbgcxb2020.10.026.
ZHAO T Y, WANG W Z, ZHAO J Q, et al. Study on structural response characteristics of 12.7 mm kinetic energy projectile penetrating armor plate [J]. Journal of Ordnance Equipment Engineering, 2020, 41(10): 146–149. DOI: 10.11809/bqzbgcxb2020.10.026.
|
[10] |
CHEN X W, CHEN G, ZHANG F J. Deformation and failure modes of soft steel projectiles impacting harder steel targets at increasing velocity [J]. Experimental Mechanics, 2008, 48(3): 335–354. DOI: 10.1007/s11340-007-9110-4.
|
[11] |
陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting onto 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
|
[12] |
CHEN X W, ZHANG F J, LIANG B, et al. Three modes of penetration mechanisms of A3 steel cylindrical projectiles impact onto 45 steel plates [J]. Key Engineering Materials, 2007, 340/341: 295–300. DOI: 10.4028/www.scientific.net/KEM.340-341.295.
|
[13] |
PARIS V, WEISS A, VIZEL A, et al. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates [C]//EPJ Web of Conferences, 2012, 26: 04032. DOI: 10.1051/epjconf/20122604032.
|
[14] |
石益建, 杜忠华, 高光发, 等. 异形B4C/Al复合靶板抗侵彻数值模拟分析 [J]. 弹箭与制导学报, 2020, 40(2): 67–71. DOI: 10.15892/j.cnki.djzdxb.2020.02.017.
SHI Y J, DU Z H, GAO G F, et al. Numerical simulation and analysis of abnormal B4C/Al composite target [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(2): 67–71. DOI: 10.15892/j.cnki.djzdxb.2020.02.017.
|
[15] |
WOODWARD R L, O'DONNELL R G, FLOCKHART C J. Failure mechanisms in impacting penetrators [J]. Journal of Materials Science, 1992, 27(23): 6411–6416. DOI: 10.1007/BF00576292.
|
[16] |
谢恒, 吕振华. 钢芯弹冲击高强度钢过程的数值模拟分析 [J]. 高压物理学报, 2012, 26(3): 259–265. DOI: 10.11858/gywlxb.2012.03.003.
XIE H, LÜ Z H. Perforation simulations of high-strength steel by steel core bullets [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 259–265. DOI: 10.11858/gywlxb.2012.03.003.
|
[17] |
BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. DOI: 10.1016/j.ijimpeng.2008.12.003.
|
[18] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
|
[19] |
IQBAL M A, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
|
[20] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[21] |
XIAO X K, ZHANG W, WEI G, et al. Experimental and numerical investigation on the deformation and failure behavior in the Taylor test [J]. Materials and Design, 2011, 32(5): 2663–2674. DOI: 10.1016/j.matdes.2011.01.016.
|