Volume 42 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHANG Xinyue, HUI Xulong, GE Yujing, SHU Wan, BAI Chunyu, LIU Xiaochuan. Energy absorption characteristics and failure analysis of composite thin-walled structures with different cross-sectional configurations under medium- and low-speed compression loading[J]. Explosion And Shock Waves, 2022, 42(6): 063102. doi: 10.11883/bzycj-2021-0347
Citation: ZHANG Xinyue, HUI Xulong, GE Yujing, SHU Wan, BAI Chunyu, LIU Xiaochuan. Energy absorption characteristics and failure analysis of composite thin-walled structures with different cross-sectional configurations under medium- and low-speed compression loading[J]. Explosion And Shock Waves, 2022, 42(6): 063102. doi: 10.11883/bzycj-2021-0347

Energy absorption characteristics and failure analysis of composite thin-walled structures with different cross-sectional configurations under medium- and low-speed compression loading

doi: 10.11883/bzycj-2021-0347
  • Received Date: 2021-08-17
  • Accepted Date: 2022-03-17
  • Rev Recd Date: 2022-01-24
  • Available Online: 2022-04-06
  • Publish Date: 2022-06-24
  • In order to study the energy absorption characteristics of open-section thin-walled composite structures, axial compression tests were carried out by using a high-speed hydraulic servo test system. The loading speed was set to 0.01, 0.1 and 1 m/s. A high-speed camera was used to record the deformation and failure of the test specimens. The effects of cross-section shape, section aspect ratio, trigger mechanism, and loading speed on the energy absorption characteristics of the composite structures are analyzed. The failure and energy absorption mechanism of the structure in the crushing process is revealed. The results show that the energy absorption is mainly attributed to material bending, delamination, shear failure and friction between crushing zones during the crushing process. The cross-section shape has a significant influence on its energy absorption capacity. The average crushing loads of the hat shaped and Ω- shaped specimens are 14.1% and 14.6% higher than that of the C-channel specimens, and their specific energy absorption (SEA) are 14.3% and 14.8% higher than that of C-channel specimens, respectively. The stress concentration of C-channel specimens leads to insufficient material damage, responsible to their lower energy absorption capacity. On the other hand, the section aspect ratio has less effect on the energy absorption capacity of composite thin-walled structures. The trigger mechanism mainly affects the initial crushing stage of the structures. For the C-channel specimens, 45° chamfer trigger is more effective in reducing the initial peak load; while for the hat shaped test piece, the 15° steeple trigger is better. When the loading speed was increased from 0.01 m/s to 1 m/s, the average crushing load of the C channel, hat shaped and Ω-shaped specimens were reduced by 6.1%, 10.9% and 6.1%, respectively; while the SAE were reduced by 6.2%, 11.0% and 6.2% respectively. The increase of loading speed leads to more debris flying out, which reduces the loading area and material utilization of the structure, and it reduces the friction energy absorption of the collapse zone, too.
  • loading
  • [1]
    REN Y R, JIANG H Y, JI W Y, et al. Improvement of progressive damage model to predicting crashworthy composite corrugated plate [J]. Applied Composite Materials, 2017, 25(1): 45–66. DOI: 10.1007/s10443-017-9610-z.
    [2]
    刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究 [J]. 航空学报, 2012, 33(12): 2202–2210.

    LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2202–2210.
    [3]
    冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析 [J]. 航空学报, 2019, 40(2): 522394. DOI: 10.7527/S1000-6893.2018.22394.

    FENG Z Y, XIE J, LI H H, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522394. DOI: 10.7527/S1000-6893.2018.22394.
    [4]
    冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性 [J]. 航空学报, 2019, 40(9): 222907. DOI: 10.7527/S1000-6893.2019.22907.

    FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing charateristics of a typical sub-cargo fuselage section of a transport category aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 222907. DOI: 10.7527/S1000-6893.2019.22907.
    [5]
    李松晏, 郑志军, 虞吉林. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35: 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.

    LI S Y, ZHENG Z J, YU J L. Energy-absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35: 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.
    [6]
    SUBBARAMAIAH R, PRUSTY B G, PEARCE G M K, et al. Crashworthy response of fibre metal laminate top hat structures [J]. Composite Structures, 2017, 160: 773–781. DOI: 10.1016/j.compstruct.2016.10.112.
    [7]
    JIANG H Y, REN Y R, GAO B H, et al. Design of novel plug-type triggers for composite square tubes: enhancement of energy-absorption capacity and inducing failure mechanisms [J]. International Journal of Mechanical Sciences, 2017, 131: 113–136. DOI: 10.1016/j.ijmecsci.2017.06.050.
    [8]
    REN Y R, ZHANG H Y, XIANG J W. A novel aircraft energy absorption strut system with corrugated composite plate to improve crashworthiness [J]. International Journal of Crashworthiness, 2018, 23(1): 1–10. DOI: 10.1080/13588265.2017.1301082.
    [9]
    冯振宇, 周坤, 裴惠, 等. 复合材料薄壁方管准静态轴向压缩失效机理及吸能特性 [J]. 高分子材料科学与工程, 2019, 35(8): 94–104. DOI: 10.16865/j.cnki.1000-7555.2019.0220.

    FENG Z Y, ZHOU K, PEI H, et al. Failure mechanism and energy-absorption characteristics of composite thin-walled square tube under quasi-static axial compression load [J]. Polymer Materials Science and Engineering, 2019, 35(8): 94–104. DOI: 10.16865/j.cnki.1000-7555.2019.0220.
    [10]
    解江, 马骢瑶, 霍雨佳, 等. 纤维铺层角度对复合材料薄壁圆管轴向压溃吸能特性影响研究 [J]. 振动与冲击, 2018, 37(20): 205–211. DOI: 10.13465/j.cnki.jvs.2018.20.031.

    XIE J, MA C Y, HUO Y J, et al. Effect of ply orientations on energy-absorbing characteristics of composite thin-walled circular tubes under axial compression [J]. Journal of Vibration and Shock, 2018, 37(20): 205–211. DOI: 10.13465/j.cnki.jvs.2018.20.031.
    [11]
    JIANG H Y, REN Y R, GAO B H. Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness [J]. Thin-Walled Structures, 2017, 119: 531–543. DOI: 10.1016/j.tws.2017.07.004.
    [12]
    KIM J S, YOON H J, SHIN K B. A study on crushing behaviors of composite circular tubes with different reinforcing fibers [J]. International Journal of Impact Engineering, 2011, 38(4): 198–207. DOI: 10.1016/j.ijimpeng.2010.11.007.
    [13]
    KAKOGIANNIS D, YUEN S C K, PALANIVELU S, et al. Response of pultruded composite tubes subjected to dynamic and impulsive axial loading [J]. Composites Part B: Engineering, 2013, 55: 537–547. DOI: 10.1016/j.compositesb.2013.07.022.
    [14]
    黄建城, 王鑫伟, 卞航. SMA薄弱环节对复合材料圆管耐撞性影响的试验研究 [J]. 工程力学, 2011, 28(10): 222–227.

    HUANG J C, WANG X W, BIAN H. Effect of SMA trigger on the crashworthiness of composite tubes [J]. Engineering Mechanics, 2011, 28(10): 222–227.
    [15]
    王振, 宋凯, 朱国华, 等. 单向碳纤维复合材料锥管轴向吸能特性研究 [J]. 振动与冲击, 2018, 37(7): 172–178.

    WANG Z, SONG K, ZHU G H, et al. Axial energy absorption characteristics of unidirectional carbon-fiber composite cone tubes [J]. Journal of Vibration and Shock, 2018, 37(7): 172–178.
    [16]
    邓亚斌, 任毅如, 蒋宏勇. 复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为 [J]. 复合材料学报, 2022, 39(4): 1796–1804.

    DENG Y B, REN Y R, JIANG H Y. Oblique crushing failure behaviors of composite energy-absorbing circu-lar tube under the semi-circular cavity triggering mechanism [J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1796–1804.
    [17]
    谭丽辉, 徐涛, 崔晓梅, 等. 带有圆弧形凹槽金属薄壁圆管抗撞性优化设计 [J]. 爆炸与冲击, 2014, 34(5): 547–553. DOI: 10.11883/1001-1455(2014)05-0547-07.

    TAN L H, XU T, CUI X M, et al. Design optimization for crashworthiness of metal thin-walled cylinders with circular arc indentations [J]. Explosion and Shock Waves, 2014, 34(5): 547–553. DOI: 10.11883/1001-1455(2014)05-0547-07.
    [18]
    殷之平, 李玉龙, 黄其青. 含诱导缺陷薄壁圆管耐撞性优化设计 [J]. 爆炸与冲击, 2011, 31(4): 418–422. DOI: 10.11883/1001-1455(2011)04-0418-05.

    YIN Z P, LI Y L, HUANG Q Q. Optimal crashworthiness design of thin-walled circular tubes with triggering holes [J]. Explosion and Shock Waves, 2011, 31(4): 418–422. DOI: 10.11883/1001-1455(2011)04-0418-05.
    [19]
    黄建城. 含薄弱环节复合材料圆管轴向吸能特性研究 [D]. 南京: 南京航空航天大学, 2011: 46–96.

    HUANG J C. On the axial energy absorption behaviour of composite tubes with crush triggers [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 46–96.
    [20]
    DEEPAK S. Crashworthy design and analysis of aircraft structures [D]. Philadelphia: Drexel University, 2013: 87–227.
    [21]
    蒋宏勇. 复合材料薄壁结构的损伤耦合破坏模型及其吸能机理的研究 [D]. 长沙: 湖南大学, 2017: 33–36.

    JIANG H Y. Research on the damage coupling destruction model and energy-absorbing mechanism of composite thin-walled structure [D]. Changsha: Hunan University, 2017: 33–36.
    [22]
    ZHAO X, ZHU G H, ZHOU C Y, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases [J]. Composite Structures, 2019, 222: 110920. DOI: 10.1016/j.compstruct.2019.110920.
    [23]
    郝文乾, 卢进帅, 黄睿, 等. 轴向冲击载荷下薄壁折纹管的屈曲模态与吸能 [J]. 爆炸与冲击, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.

    HAO W Q, LU J S, HUANG R, et al. Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting [J]. Explosion and Shock Waves, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.
    [24]
    解江, 张雪晗, 宋山山, 等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性 [J]. 复合材料学报, 2018, 35(12): 3261–3270. DOI: 10.13801/j.cnki.fhclxb.20180319.002.

    XIE J, ZHANG X H, SONG S S, et al. Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression [J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3261–3270. DOI: 10.13801/j.cnki.fhclxb.20180319.002.
    [25]
    JIANG H Y, REN Y R. Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load [J]. Composite Structures, 2019, 229: 111375. DOI: 10.1016/j.compstruct.2019.111375.
    [26]
    JOOSTEN M W, DUTTON S, KELLY D, et al. Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element [J]. Composite Structures, 2011, 93(2): 682–689. DOI: 10.1016/j.compstruct.2010.08.011.
    [27]
    RICCIO A, RAIMONDO A, CAPRIO F D, et al. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system [J]. Composites Part B: Engineering, 2018, 150: 93–103. DOI: 10.1016/j.compositesb.2018.05.044.
    [28]
    RICCIO A, SAPUTO S, SELLITTO A, et al. On the crashworthiness behaviour of a composite fuselage sub-floor component [J]. Composite Structures, 2020, 234: 111662. DOI: 10.1016/j.compstruct.2019.111662.
    [29]
    JACKSON A, DUTTON S, GUNNION A J, et al. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing [J]. Composite Structures, 2011, 93(10): 2646–2654. DOI: 10.1016/j.compstruct.2011.04.032.
    [30]
    解江, 宋山山, 宋东方, 等. 复合材料C型柱轴压失效分析的层合壳建模方法 [J]. 航空学报, 2019, 40(2): 522395. DOI: 10.7527/S1000-6893.2018.22395.

    XIE J, SONG S S, SONG D F, et al. Stacked shell modeling menthod for failure analysis of composite C-channel subject to axial cmpression [J]. Acta aeronautica et Astronautica Sinica, 2019, 40(2): 522395. DOI: 10.7527/S1000-6893.2018.22395.
    [31]
    汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验 [J]. 复合材料学报, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.

    WANG Y, WU Z B, LIU F. Crush experiment of composite cargo floor stanchions [J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.
    [32]
    FERABOLI P. Development of a corrugated test specimen for composite materials energy absorption [J]. Journal of Composite Materials, 2008, 42(3): 229–56. DOI: 10.1177/0021998307086202.
    [33]
    WAIMER M, KOHLGRÜBER D, HACHENBERG D, et al. Experimental study of CFRP components subjected to dynamic crash loads [J]. Composite Structures, 2013, 105: 288–299. DOI: 10.1016/j.compstruct.2013.05.030.
    [34]
    PATEL S, VUSA V R, SOARES C G. Crashworthiness analysis of polymer composites under axial and oblique impact loading [J]. International Journal of Mechanical Sciences, 2019, 156(1): 221–234. DOI: 10.1016/j.ijmecsci.2019.03.038.
    [35]
    WAIMER M, SIEMANN M H, FESER T. Simulation of CFRP components subjected to dynamic crash loads [J]. International Journal of Impact Engineering, 2017, 101(1): 115–131. DOI: 10.1016/j.ijimpeng.2016.11.011.
    [36]
    蒋宏勇, 任毅如, 袁秀良, 等. 基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究 [J]. 航空学报, 2017, 38(6): 220717. DOI: 10.7527/S1000-6893.2016.220717.

    JIANG H Y, REN Y R, YUAN X L, et al. Crashworthiness of composite corrugated beam based on nonlinear progressive damage model [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 220717. DOI: 10.7527/S1000-6893.2016.220717.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article Metrics

    Article views (636) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return