Citation: | NIE Zhengyue, DING Yuqing, SONG Jiangjie, PENG Yong, LIN Yuliang, CHEN Rong. A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite[J]. Explosion And Shock Waves, 2022, 42(9): 091409. doi: 10.11883/bzycj-2021-0363 |
[1] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//Proceedings of 14th International Symposium. Quebec, Canada: ADPA, 1993: 591–600.
|
[2] |
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
|
[3] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Interaction of the Effects of Munitions with Structures. Berlin: Fraunhofer Institut für Kurzzeitdynamik, Ernst-Mach-Institut (EMI), 1999: 315–322.
|
[4] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
|
[5] |
TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
|
[6] |
GRUNWALD C, SCHAUFELBERGER B, STOLZ A, et al. A general concrete model in hydrocodes: verification and validation of the Riedel-Hiermaier-Thoma model in LS-DYNA [J]. International Journal of Protective Structures, 2017, 8(1): 58–85. DOI: 10.1177/2041419617695977.
|
[7] |
毕程程. 华山花岗岩HJC本构参数标定及爆破损伤数值模拟 [D]. 合肥: 合肥工业大学, 2018.
BI C C. Calibration of HJC constitutive parameters of Huashan granite and its blasting damage numerical simulation [D]. Hefei: Hefei University of Technology, 2018.
|
[8] |
SAUER C, HEINE A, RIEDEL W. Developing a validated hydrocode model for adobe under impact loading [J]. International Journal of Impact Engineering, 2017, 104: 164–176. DOI: 10.1016/j.ijimpeng.2017.01.019.
|
[9] |
ZHANG F L, SHEDBALE A S, ZHONG R, et al. Ultra-high performance concrete subjected to high-velocity projectile impact: implementation of K&C model with consideration of failure surfaces and dynamic increase factors [J]. International Journal of Impact Engineering, 2021, 155: 103907. DOI: 10.1016/j.ijimpeng.2021.103907.
|
[10] |
KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
|
[11] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[12] |
TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
|
[13] |
POLANCO-LORIA M, HOPPERSTAD O S, BØRVIK T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model [J]. International Journal of Impact Engineering, 2008, 35(5): 290–303. DOI: 10.1016/j.ijimpeng.2007.03.001.
|
[14] |
KONG X Z, FANG Q, Li Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
|
[15] |
LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. DOI: 10.1016/j.ijimpeng.2005.06.005.
|
[16] |
金乾坤. 混凝土动态损伤与失效模型 [J]. 兵工学报, 2006, 27(1): 10–14. DOI: 10.3321/j.issn:1000-1093.2006.01.003.
JIN Q K. Dynamic damage and failure model for concrete materials [J]. Acta Armamentarii, 2006, 27(1): 10–14. DOI: 10.3321/j.issn:1000-1093.2006.01.003.
|
[17] |
HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
|
[18] |
LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
|
[19] |
WILLMOTT G R, PROUD W G. The shock hugoniot of tuffisitic kimberlite breccia [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(2): 228–237. DOI: 10.1016/j.ijrmms.2006.07.006.
|
[20] |
张燕, 于大伟, 叶剑红. 岩石类材料拉伸弹性模量测量方法的对比研究 [J]. 岩土力学, 2018, 39(6): 2295–2303. DOI: 10.16285/j.rsm.2017.2192.
ZHANG Y, YU D W, YE J H. Study on measurement methodology of tensile elastic modulus of rock materials [J]. Rock and Soil Mechanics, 2018, 39(6): 2295–2303. DOI: 10.16285/j.rsm.2017.2192.
|
[21] |
中国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266-2013 [S]. 北京: 中国标准出版社, 2008. .
|
[22] |
刘佑荣, 唐辉明. 岩体力学 [M]. 北京: 化学工业出版社, 2008.
|
[23] |
中国爆破行业协会. 岩石材料动态单轴压缩强度测试方法: T/CSEB 0004-2018 [S]. 北京: 冶金工业出版社, 2018.
|
[24] |
中国爆破行业协会. 岩石材料巴西圆盘试样动态拉伸强度测试方法: T/CSEB 0001-2018 [S]. 北京: 冶金工业出版社, 2018.
|
[25] |
ZHANG Q B, BRAITHWAITE C H, ZHAO J. Hugoniot equation of state of rock materials under shock compression [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2085): 20160169. DOI: 10.1098/rsta.2016.0169.
|
[26] |
SHANG J L, SHEN L T, ZHAO J. Hugoniot equation of state of the Bukit Timah granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 705–713. DOI: 10.1016/S1365-1609(00)00002-2.
|
[27] |
MEYERS M A. Dynamic behavior of materials [M]. New York: Wiley, 1994: 133.
|
[28] |
李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
|
[29] |
梁斌, 刘彤. 有界混凝土靶尺寸效应对弹丸侵彻的影响研究 [J]. 弹箭与制导学报, 2004, 24(4): 39–41. DOI: 10.3969/j.issn.1673-9728.2004.04.013.
|
[1] | FANG Qin, GAO Chu, KONG Xiangzhen, YANG Ya. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅰ): blast resistance mechanism[J]. Explosion And Shock Waves, 2024, 44(11): 111001. doi: 10.11883/bzycj-2023-0459 |
[2] | ZHAO Hongyuan, WU Haijun, DONG Heng, LYU Yingqing, HUANG Fenglei. An experimental study of anti-penetration performance of concrete-filled steel tube with honeycomb structure[J]. Explosion And Shock Waves, 2023, 43(5): 053101. doi: 10.11883/bzycj-2022-0050 |
[3] | GAO Chu, KONG Xiangzhen, FANG Qin, WANG Yin, YANG Ya. Numerical study on attenuation of stress wave in concrete subjected to explosion[J]. Explosion And Shock Waves, 2022, 42(12): 123202. doi: 10.11883/bzycj-2022-0041 |
[4] | WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation[J]. Explosion And Shock Waves, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467 |
[5] | DAI Xianghui, WANG Kehui, SHEN Zikai, DUAN Jian, LI Ming, GU Renhong, LI Pengjie, YANG Hui, KE Ming, ZHOU Gang. Experiment of fast cook-off safety characteristic for penetrator[J]. Explosion And Shock Waves, 2020, 40(9): 092301. doi: 10.11883/bzycj/2020-0016 |
[6] | SUN Yuxiang, WANG Jie, WU Haijun, ZHOU Jiequn, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment and simulation on high-pressure equation of state for concrete[J]. Explosion And Shock Waves, 2020, 40(12): 121401. doi: 10.11883/bzycj-2020-0002 |
[7] | CHENG Yihao, DENG Guoqiang, LI Gan, SONG Chunming, QIU Yanyu, ZHANG Zhongwei, WANG Derong, WANG Mingyang. Model experiments on penetration of layered geological material targets by hypervelocity rob projectiles[J]. Explosion And Shock Waves, 2019, 39(7): 073301. doi: 10.11883/bzycj-2018-0230 |
[8] | DENG Jiajie, ZHANG Xianfeng, LIU Chuang, WANG Wenjie, XU Chenyang. Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target[J]. Explosion And Shock Waves, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413 |
[9] | Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun. Experimental study on penetration-resistance characteristics of honeycomb shelter[J]. Explosion And Shock Waves, 2016, 36(2): 253-258. doi: 10.11883/1001-1455(2016)02-0253-06 |
[10] | XuWei-fang, ZhangFang-ju, ChenYu-ze, . Experimentalstudyonpenetrationresponsesofthinconcretetargets[J]. Explosion And Shock Waves, 2013, 33(2): 169-174. doi: 10.11883/1001-1455(2013)02-0169-06 |
[11] | Xiong Liang-ping, Huang Dao-ye, Wang Feng-ying. Protection effectiveness of a new explosive reactive armor against penetration of long-rod projectiles with small yaw angles[J]. Explosion And Shock Waves, 2013, 33(1): 108-112. doi: 10.11883/1001-1455(2013)01-0108-05 |
[12] | Wu Biao, Yang Jian-chao, Liu Rui-chao. Experimental study on perforation resistance of composite targets composed by granite block masonry and reinforced concrete plates[J]. Explosion And Shock Waves, 2013, 33(1): 73-78. doi: 10.11883/1001-1455(2013)01-0073-06 |
[13] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[14] | SUN Chuan-Jie, LU Yong-Gang, ZHANG Fang-Ju, LI Hui-Min. Penetration of cylindrical-nose-tip projectiles into concrete targets[J]. Explosion And Shock Waves, 2010, 30(3): 269-275. doi: 10.11883/1001-1455(2010)03-0269-07 |
[15] | WU Shan-xing, CHEN Da-nian, HU Jin-wei, ZHANG Duo, JIN Yang-hui, WANG Huan-ran. A cylinder-plate impact test for oxygen-free high-conductivity copper and comparison of effects of three constitutive models[J]. Explosion And Shock Waves, 2009, 29(3): 295-299. doi: 10.11883/1001-1455(2009)03-0295-05 |
[16] | ZHAO Ji-bo, WEN Shang-gang, TAN Duo-wang, ZHANG Guang-sheng, FU Hua, LI Tao. Application of APX-RS digital camera to high-speed photography[J]. Explosion And Shock Waves, 2009, 29(1): 90-94. doi: 10.11883/1001-1455(2009)01-0090-05 |
[17] | RONG Guang, HUANG De-wu. Self-sharpening phenomena of tungsten fiber composite material penetratorsduring penetration[J]. Explosion And Shock Waves, 2009, 29(4): 351-355. doi: 10.11883/1001-1455(2009)04-0351-05 |
[18] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[19] | DUAN Zhuo-ping. The experimental and theoretical research for end-point trajectory of warhead penetrating ribbings structural target[J]. Explosion And Shock Waves, 2005, 25(6): 547-552. doi: 10.11883/1001-1455(2005)06-0547-06 |
1. | 杨慧,王可慧,周刚,李明,吴海军,戴湘晖,段建. 不同风化程度花岗岩的动态力学特性及抗侵彻性能. 爆炸与冲击. 2024(10): 49-66 . ![]() |