Volume 42 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
NIE Zhengyue, DING Yuqing, SONG Jiangjie, PENG Yong, LIN Yuliang, CHEN Rong. A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite[J]. Explosion And Shock Waves, 2022, 42(9): 091409. doi: 10.11883/bzycj-2021-0363
Citation: NIE Zhengyue, DING Yuqing, SONG Jiangjie, PENG Yong, LIN Yuliang, CHEN Rong. A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite[J]. Explosion And Shock Waves, 2022, 42(9): 091409. doi: 10.11883/bzycj-2021-0363

A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite

doi: 10.11883/bzycj-2021-0363
Funds:  LIANG B, LIU T. Boundary effects of finite concrete targets subjected to impact projectiles [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(4): 39-41. DOI: 10.3969/j.issn.1673-9728.2004.04.013.
  • Received Date: 2021-08-26
  • Rev Recd Date: 2022-01-26
  • Available Online: 2022-04-06
  • Publish Date: 2022-09-29
  • The establishment of the dynamic mechanical model of rock materials and the determination of the relevant model parameters are of great significance to the studies of rock’s dynamic mechanical properties and related simulation calculation. Taking granite in Shandong Province as the experimental object, based on the Kong-Fang fluid elastic-plastic damage material model (KF model), the model parameters are classified into three categories, and the test scheme is then correspondingly determined. The basic strength parameters of the KF model were measured by quasi-static uniaxial compression and unconfined splitting tests. The strength-surface related material parameters were fitted by the results of the conventional triaxial tests under five different confining pressure conditions. In addition, the dynamic split Hopkinson pressure bar (SHPB) tests under several strain rate conditions were carried out to determine the strain-rate related parameters, of which the effectiveness were then verified by the dynamic split Hopkinson pressure bar-Brazilian disk (SHPB-BD) tests results. According to the principle of reverse impact and the Rankine-Hugoniot equation, the plate impact experiments with different impact stress levels were conducted by using a single-stage light gas gun, the state equation parameters in the KF model were fitted according to the impact Hugoniot results of rock samples. To verify the applicability of the material model and the experimentally measured parameter values, the simulation of a penetration process is furtherly conducted. The granite penetration tests were carried out by using a $\varnothing $30 mm caliber gun. The $\varnothing $20 mm bullets penetrated the $\varnothing $1200 mm×800 mm rock targets vertically, which was used to characterize the semi-infinite thickness condition, at an approximately designed speed of 670 m/s. To avoid accidental errors, combined with the high-speed photographic images, three effective penetrate results were obtained. The penetration depth and crater size of the target failure surface were directly measured and scanned by 3D scanner, the experimental average penetration depth, maximum and minimum diameters of the penetration craters were approximately 80.62 mm, 381.47 mm and 263.01 mm, respectively. Using the parameter values obtained from the laboratory experiments, the KF model is then implemented into LS-DYNA through a user-defined material model and used to simulate the penetration test of granite. According to the simulation result of damage distribution and cratering parameters of the target, the calculated penetration depth, maximum and minimum diameters of craters are 80.02 mm, 400 mm and 300 mm, respectively, so the errors between the calculated and the test results are less than 15%, which is acceptable in dynamic problems. The agreement between the numerical and experimental results provides a support to the application of the KF model and the relevant parameter values.
  • loading
  • [1]
    HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//Proceedings of 14th International Symposium. Quebec, Canada: ADPA, 1993: 591–600.
    [2]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [3]
    RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Interaction of the Effects of Munitions with Structures. Berlin: Fraunhofer Institut für Kurzzeitdynamik, Ernst-Mach-Institut (EMI), 1999: 315–322.
    [4]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [5]
    TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
    [6]
    GRUNWALD C, SCHAUFELBERGER B, STOLZ A, et al. A general concrete model in hydrocodes: verification and validation of the Riedel-Hiermaier-Thoma model in LS-DYNA [J]. International Journal of Protective Structures, 2017, 8(1): 58–85. DOI: 10.1177/2041419617695977.
    [7]
    毕程程. 华山花岗岩HJC本构参数标定及爆破损伤数值模拟 [D]. 合肥: 合肥工业大学, 2018.

    BI C C. Calibration of HJC constitutive parameters of Huashan granite and its blasting damage numerical simulation [D]. Hefei: Hefei University of Technology, 2018.
    [8]
    SAUER C, HEINE A, RIEDEL W. Developing a validated hydrocode model for adobe under impact loading [J]. International Journal of Impact Engineering, 2017, 104: 164–176. DOI: 10.1016/j.ijimpeng.2017.01.019.
    [9]
    ZHANG F L, SHEDBALE A S, ZHONG R, et al. Ultra-high performance concrete subjected to high-velocity projectile impact: implementation of K&C model with consideration of failure surfaces and dynamic increase factors [J]. International Journal of Impact Engineering, 2021, 155: 103907. DOI: 10.1016/j.ijimpeng.2021.103907.
    [10]
    KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [11]
    KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [12]
    TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
    [13]
    POLANCO-LORIA M, HOPPERSTAD O S, BØRVIK T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model [J]. International Journal of Impact Engineering, 2008, 35(5): 290–303. DOI: 10.1016/j.ijimpeng.2007.03.001.
    [14]
    KONG X Z, FANG Q, Li Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
    [15]
    LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. DOI: 10.1016/j.ijimpeng.2005.06.005.
    [16]
    金乾坤. 混凝土动态损伤与失效模型 [J]. 兵工学报, 2006, 27(1): 10–14. DOI: 10.3321/j.issn:1000-1093.2006.01.003.

    JIN Q K. Dynamic damage and failure model for concrete materials [J]. Acta Armamentarii, 2006, 27(1): 10–14. DOI: 10.3321/j.issn:1000-1093.2006.01.003.
    [17]
    HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
    [18]
    LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [19]
    WILLMOTT G R, PROUD W G. The shock hugoniot of tuffisitic kimberlite breccia [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(2): 228–237. DOI: 10.1016/j.ijrmms.2006.07.006.
    [20]
    张燕, 于大伟, 叶剑红. 岩石类材料拉伸弹性模量测量方法的对比研究 [J]. 岩土力学, 2018, 39(6): 2295–2303. DOI: 10.16285/j.rsm.2017.2192.

    ZHANG Y, YU D W, YE J H. Study on measurement methodology of tensile elastic modulus of rock materials [J]. Rock and Soil Mechanics, 2018, 39(6): 2295–2303. DOI: 10.16285/j.rsm.2017.2192.
    [21]
    中国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266-2013 [S]. 北京: 中国标准出版社, 2008. .
    [22]
    刘佑荣, 唐辉明. 岩体力学 [M]. 北京: 化学工业出版社, 2008.
    [23]
    中国爆破行业协会. 岩石材料动态单轴压缩强度测试方法: T/CSEB 0004-2018 [S]. 北京: 冶金工业出版社, 2018.
    [24]
    中国爆破行业协会. 岩石材料巴西圆盘试样动态拉伸强度测试方法: T/CSEB 0001-2018 [S]. 北京: 冶金工业出版社, 2018.
    [25]
    ZHANG Q B, BRAITHWAITE C H, ZHAO J. Hugoniot equation of state of rock materials under shock compression [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2085): 20160169. DOI: 10.1098/rsta.2016.0169.
    [26]
    SHANG J L, SHEN L T, ZHAO J. Hugoniot equation of state of the Bukit Timah granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 705–713. DOI: 10.1016/S1365-1609(00)00002-2.
    [27]
    MEYERS M A. Dynamic behavior of materials [M]. New York: Wiley, 1994: 133.
    [28]
    李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [29]
    梁斌, 刘彤. 有界混凝土靶尺寸效应对弹丸侵彻的影响研究 [J]. 弹箭与制导学报, 2004, 24(4): 39–41. DOI: 10.3969/j.issn.1673-9728.2004.04.013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(9)

    Article Metrics

    Article views (741) PDF downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return