Citation: | CHENG Yuehua, JIANG Pengfei, WU Hao, TAN Keke, FANG Qin. On penetration depth of typical earth-penetrating projectilesinto concrete targets considering the scaling effect[J]. Explosion And Shock Waves, 2022, 42(6): 063302. doi: 10.11883/bzycj-2021-0373 |
[1] |
PETRY L. Monographies de systemes d’Artillerie [M]. Brussels, Belgium: Cans et Compagnie, 1910.
|
[2] |
GWALTNEY R C. Missile generation and protection in light-water-cooled power reactor plants: ORNL-NSIC-22 [R]. Oak Ridge, USA: Oak Ridge National Laboratory, 1968.
|
[3] |
Army Corps of Engineers. Fundamentals of protective design: AT1207821 [R]. Pennsylvania, USA: Office of the Chief of Engineers, 1946.
|
[4] |
National Defense Research Committee. Effects of impact and explosion: summary technical report of division 2, vol. 1 [R]. Washington, USA: National Defense Research Committee, 1946.
|
[5] |
KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. DOI: 10.1016/0029-5493(76)90015-7.
|
[6] |
WHIFFEN P. UK road research laboratory: MOS/311 [R]. 1943.
|
[7] |
KAR A K. Local effects of tornado-generated missiles [J]. Journal of the Structural Division, 1978, 104(5): 809–816. DOI: 10.1061/JSDEAG.0004915.
|
[8] |
BARR P. Guidelines for the design and assessment of concrete structures subjected to impact [R]. London, UK: UK Atomic Energy Authority, Safety and Reliability Directorate, 1990.
|
[9] |
HALDAR A, HAMIEH H A. Local effect of solid missiles on concrete structures [J]. Journal of Structural Engineering, 1984, 110(5): 948–960. DOI: 10.1061/(ASCE)0733-9445(1984)110:5(948).
|
[10] |
ADELI H, AMIN A M. Local effects of impactors on concrete structures [J]. Nuclear Engineering and Design, 1985, 88(3): 301–317. DOI: 10.1016/0029-5493(85)90165-7.
|
[11] |
HUGHES G. Hard missile impact on reinforced concrete [J]. Nuclear Engineering and Design, 1984, 77(1): 23–35. DOI: 10.1016/0029-5493(84)90058-X.
|
[12] |
BANGASH M Y H. Concrete and concrete structures: numerical modelling and application [M]. London, UK: Elsevier Applied Science, 1989.
|
[13] |
BANGASH M Y H. Impact and explosion: structural analysis and design [R]. Boca Raton, USA: CRC Press, 1993.
|
[14] |
CHANG W S. Impact of solid missiles on concrete barriers [J]. Journal of the Structural Division, 1981, 107(2): 257–271. DOI: 10.1061/JSDEAG.0005640.
|
[15] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743x(94)80024-4.
|
[16] |
FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
|
[17] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
|
[18] |
ROSENBERG Z, DEKEL E. The deep penetration of concrete targets by rigid rods-revisited [J]. International Journal of Protective Structures, 2010, 1(1): 125–144. DOI: 10.1260/2041-4196.1.1.125.
|
[19] |
ROSENBERG Z, KOSITSKI R. Modeling the penetration and perforation of concrete targets by rigid projectiles [J]. International Journal of Protective Structures, 2016, 7(2): 157–178. DOI: 10.1177/2041419616632422.
|
[20] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C]//Proceedings of the 14th International Symposium on Ballistic. Quebec, Canada: American Defense Preparedness Association, 1993: 591−600.
|
[21] |
TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
|
[22] |
REIDEL W, THORMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500, numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Berlin-Strausberg, Germany, 1999: 315−322.
|
[23] |
KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
|
[24] |
KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
|
[25] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[26] |
邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究 [J]. 爆炸与冲击, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.
DENG Y J, CHEN X W, ZHONG W Z, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target [J]. Explosion and Shock Waves, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.
|
[27] |
马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.
MA T B, WU J, NING J G. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete [J]. Explosion and Shock Waves, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.
|
[28] |
吴飚, 任辉启, 陈力, 等. 弹体侵彻混凝土尺度效应试验研究与理论分析 [J]. 防护工程, 2020, 42(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.02.001.
WU B, REN H Q, CHEN L, et al. Experimental study and theoretical analysis of size effect on projectile penetrating concrete [J]. Protective Engineering, 2020, 42(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.02.001.
|
[29] |
FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
|
[30] |
FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
|
[31] |
CANFIELD J A, CLATOR I G. Development of a scaling law and techniques to investigate penetration in concrete: NWL Report No. 2057 [R]. Dahlgren, VA, USA: US Naval Weapons Laboratory, 1966.
|
[32] |
徐建波. 长杆射弹对混凝土的侵彻特性研究 [D]. 长沙: 国防科学技术大学, 2001.
XU J B. Investigations on long projectiles penetrating into concrete targets [D]. Changsha, Hunan, China: National University of Defense Technology, 2001.
|
[33] |
WU H, LI Y C, FANG Q, et al. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses [J]. Construction and Building Materials, 2019, 208: 506–524. DOI: 10.1016/j.conbuildmat.2019.03.040.
|
[34] |
彭永, 卢芳云, 方秦, 等. 弹体侵彻混凝土靶体的尺寸效应分析 [J]. 爆炸与冲击, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.
PENG Y, LU F Y, FANG Q, et al. Analyses of the size effect for projectile penetrations into concrete targets [J]. Explosion and Shock Waves, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.
|
[35] |
FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
|
[36] |
黄蒙, 欧卓成, 段卓平, 等. 刚性弹体侵彻混凝土的相似性研究 [J]. 兵工学报, 2016, 37(S2): 176–180.
HUANG M, OU Z C, DUAN Z P, et al. A study of similarity analysis of hard projectile penetrating into concrete [J]. Acta Armamentarii, 2016, 37(S2): 176–180.
|
[37] |
GOMEZ J T, SHUKLA A. Multiple impact penetration of semi-infinite concrete [J]. International Journal of Impact Engineering, 2001, 25(10): 965–979. DOI: 10.1016/S0734-743X(01)00029-X.
|
[38] |
石志勇. 长杆射弹侵彻两种混凝土靶的特性研究 [D]. 长沙: 国防科学技术大学, 2002.
SHI Z Y. Study on the characteristics of long-rod projectile penetrating two kinds of concrete targets [D]. Changsha, Hunan, China: National University of Defense Technology, 2002.
|
[39] |
蒋荣峰. 动能侵彻弹侵彻混凝土技术研究 [D]. 成都: 四川大学, 2003.
JIANG R F. Techniques of kinetic energy projectile penetrating into the concrete [D]. Chengdu, Sichuan, China: Sichuan University, 2003.
|
[40] |
顾晓辉, 王晓鸣, 陈惠武, 等. 动能弹低速垂直侵彻钢筋混凝土的试验研究 [J]. 南京理工大学学报, 2006, 30(1): 1–4. DOI: 10.14177/j.cnki.32-1397n.2006.01.001.
GU X H, WANG X M, CHEN H W, et al. Experimental studies on kinetic projectile’s direct penetrations with low-speed against reinforced concrete targets [J]. Journal of Nanjing University of Science and Technology, 2006, 30(1): 1–4. DOI: 10.14177/j.cnki.32-1397n.2006.01.001.
|
[41] |
孙传杰, 卢永刚, 张方举, 等. 新型头形弹体对混凝土的侵彻 [J]. 爆炸与冲击, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.
SUN C J, LU Y G, ZHANG F J, et al. Penetration of cylindrical-nose-tip projectiles into concrete targets [J]. Explosion and Shock Waves, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.
|
[42] |
邓云飞, 崔亚男, 慕忠成, 等. 卵形头弹体对素混凝土高速侵彻的实验研究 [J]. 应用力学学报, 2019, 36(5): 1144–1151.
DENG Y F, CUI Y N, MU Z C, et al. An experimental investigation of ogive-nosed projectiles penetration into plain concrete at high velocities [J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1144–1151.
|
[43] |
林圣灵. 弹丸侵彻混凝土靶实验及仿真 [D]. 北京: 北京理工大学, 2016.
LIN S L. Experiment and simulation of projectile penetrating concrete target [D]. Beijing, China: Beijing Institute of Technology, 2016.
|
[44] |
梁斌. 动能攻坚战斗部对混凝土靶侵爆效应研究 [D]. 四川绵阳: 中国工程物理研究院, 2009.
LIANG B. Study on the penetration and blasting damage of concrete for anti-hard-target warhead [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2009.
|
[45] |
张广乐. 高速杆弹侵彻混凝土效应研究 [D]. 南京: 南京理工大学, 2011.
ZHANG G L. Study on the effects of high-speed long rod projectile penetrating concrete [D]. Nanjing, Jiangsu, China: Nanjing Institute of Technology, 2011.
|
[46] |
武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.
WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
|
[47] |
庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻混凝土效应试验研究 [J]. 兵工学报, 2015, 36(1): 46–52. DOI: 10.3969/j.issn.1000-1093.2015.01.007.
PANG C X, HE Y, SHEN X J, et al. Experimental investigation on penetration of grooved projectiles into concrete targets [J]. Acta Armamentarii, 2015, 36(1): 46–52. DOI: 10.3969/j.issn.1000-1093.2015.01.007.
|
[48] |
胡玉涛, 柯明, 杨慧, 等. 弹体侵彻混凝土靶侵蚀实验研究 [C]//中国力学大会论文集(CCTAM 2019). 杭州: 中国力学学会, 2019.
|
[49] |
赵晓宁. 高速弹体对混凝土侵彻效应研究 [D]. 南京: 南京理工大学, 2011.
ZHAO X N. Study on the effect of projectiles high-velocity normal penetrating into concrete targets [D]. Nanjing, Jiangsu, China: Nanjing Institute of Technology, 2011.
|
[50] |
柴传国. 异形头部弹体对混凝土靶的侵彻效应研究 [D]. 北京: 北京理工大学, 2014.
CHAI C G. Study on the mechanism of penetration into concrete of nose headed projectile [D]. Beijing, China: Beijing Institute of Technology, 2014.
|
[51] |
郭磊, 何勇, 潘绪超, 等. 高速侵彻混凝土弹体侵蚀效应试验研究 [J]. 实验力学, 2020, 35(1): 82–90. DOI: 10.7520/1001-4888-18-182.
GUO L, HE Y, PAN X C, et al. Experimental study on mass loss of projectile subjected to high-velocity penetration into concrete target [J]. Journal of Experimental Mechanics, 2020, 35(1): 82–90. DOI: 10.7520/1001-4888-18-182.
|
[52] |
陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(Ⅲ):缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.
CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of EPW (Ⅲ): investigations on the reduced-scale tests [J]. Explosion and Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.
|
[53] |
黄民荣. 刚性弹体对混凝土靶的侵彻与贯穿机理研究 [D]. 南京: 南京理工大学, 2011.
HUANG M R. Penetration and perforation mechanism of rigid projectile into the concrete target [D]. Nanjing, Jiangsu, China: Nanjing Institute of Technology, 2011.
|
[54] |
Livermore Software Technology Corporation. LS-DYNA keyword user’s manual volume Ⅱ: material models [M]. Livermore, USA: Livermore Software Technology Corporation, 2012.
|
[55] |
BORRVALL T, RIEDEL W. The RHT concrete model in LS-DYNA [C]//Proceedings of the 8th European LS-DYNA Users Conference. Strasbourg, France: Springer, 2011.
|
[56] |
甄建伟, 曹凌宇, 孙福. 弹药毁伤效应数值仿真技术 [M]. 北京: 北京理工大学出版社, 2018.
ZHEN J W, CAO L Y, SUN F. Numerical simulation of ammunition damage effect [M]. Beijing, China: Beijing Institute of Technology Press, 2018.
|
[57] |
严平, 谭波, 苗润, 等. 战斗部及其毁伤原理 [M]. 北京: 国防工业出版社, 2020.
YAN P, TAN B, MIAO R, et al. Warhead and its damage principle [M]. Beijing, China: National Defense Industry Press, 2020.
|
[58] |
PENG Y, WU H, FANG Q, et al. Geometrical scaling effect for penetration depth of hard projectiles into concrete targets [J]. International Journal of Impact Engineering, 2018, 120: 46–59. DOI: 10.1016/j.ijimpeng.2018.05.010.
|
[59] |
O’NEIL E F, NEELEY B D, CARGILE J D. Tensile properties of very-high-strength concrete for penetration-resistant structures [J]. Shock and Vibration, 1999, 6(5/6): 237–245. DOI: 10.1155/1999/415360.
|
[60] |
ZHANG M H, SHARIF M S H, LU G. Impact resistance of high-strength fibre-reinforced concrete [J]. Magazine of Concrete Research, 2007, 59(3): 199–210. DOI: 10.1680/macr.2007.59.3.199.
|
[61] |
LANGBERG H, MARKESET G. High performance concrete penetration resistance and material development [C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Norway: Norwegian Defense Construction Service, 1999.
|