Volume 42 Issue 4
May  2022
Turn off MathJax
Article Contents
WANG Jinneng, GUO Xin, JING Lin, WANG Kaiyun. Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains[J]. Explosion And Shock Waves, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374
Citation: WANG Jinneng, GUO Xin, JING Lin, WANG Kaiyun. Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains[J]. Explosion And Shock Waves, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374

Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains

doi: 10.11883/bzycj-2021-0374
  • Received Date: 2021-09-07
  • Rev Recd Date: 2021-10-21
  • Available Online: 2022-03-11
  • Publish Date: 2022-05-09
  • Wheel tread spalling is one of the common forms of wheel out-of-roundness damage of railway vehicles. During the wheel-rail rolling contact process, the wheel tread spalling will circularly impact the rail, inducing an abnormal large dynamic wheel-rail interaction, which has a serious effect on the stability and safety of high-speed trains. In order to reveal the mechanism of dynamic wheel-rail interaction induced by wheel tread spalling of high-speed trains, a three-dimensional finite element model for the wheel-rail rolling contact was built using the commercial software LS-DYNA. The mechanical responses of the wheel-rail impact caused by the wheel tread spalling of high-speed trains were simulated via the implicit-to-explicit sequential solution. The response characteristics of the wheel-rail vertical/longitudinal contact forces, contact pressure, contact patch, adhesion-slip areas, speed distribution of rail surface nodes, and the stress/strain states during the wheel-rail impact process were analyzed. Meanwhile, the effects of key parameters such as train speed, spalling length and spalling depth on the wheel-rail impact responses were discussed. The results indicate that the wheel-rail vertical dynamic contact force caused by the wheel tread spalling first increases with the train speed and then decreases, and the maximum value appears at a train speed of 300 km/h, which can reach 1.35 times the quasi-static wheel-rail vertical contact force. The maximum wheel-rail longitudinal force fluctuates slightly with the increase of the train speed, and is about 1.25 times the steady wheel-rail longitudinal contact force. The maximum wheel-rail vertical contact force, tangential contact force, the maximum von Mises stress, and equivalent plastic strain of the wheel-rail are monotonically increase with the spalling length. The spalling depth has almost no effect on the wheel-rail contact force, the maximum von Mises stress and equivalent plastic strain of the rail, but has a significant effect on the maximum von Mises stress and equivalent plastic strain of the wheel. The obtained results can provide technical support for the optimal design of the wheel-rail system and the safety of the train operation.
  • loading
  • [1]
    敬霖, 韩亮亮, 周彭滔. 基于SPH方法铁路车轴遭受道砟撞击的数值模拟 [J]. 爆炸与冲击, 2018, 38(3): 603–615. DOI: 10.11883/bzycj-2016-0265.

    JING L, HAN L L, ZHOU P T. A numerical simulation of railway axles subjected to ballast impact based on SPH method [J]. Explosion and Shock Waves, 2018, 38(3): 603–615. DOI: 10.11883/bzycj-2016-0265.
    [2]
    李志强, 赵隆茂. 铁路车辆/轨道耦合系统在竖向冲击载荷作用下动态响应的计算机模拟研究 [J]. 应用力学学报, 2007, 24(1): 79–82. DOI: 10.3969/j.issn.1000-4939.2007.01.017.

    LI Z Q, ZHAO L M. Computational simulation to dynamic response of vehicle and track coupling system under vertical impact loading [J]. Chinese Journal of Applied Mechanics, 2007, 24(1): 79–82. DOI: 10.3969/j.issn.1000-4939.2007.01.017.
    [3]
    孙伟, 王建国, 姜绍飞. 减小高速列车荷载对地面结构损害的数值分析 [J]. 爆炸与冲击, 2009, 29(2): 155–161. DOI: 10.11883/1001-1455(2009)02-0155-07.

    SUN W, WANG J G, JIANG S F. Reduction of high-speed train-induced building vibrations by protective trenches [J]. Explosion and Shock Waves, 2009, 29(2): 155–161. DOI: 10.11883/1001-1455(2009)02-0155-07.
    [4]
    JING L, LIU Z, LIU K. A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness [J]. Vehicle System Dynamics, 2020. DOI: 10.1080/00423114.2020.1815809.
    [5]
    张斌, 付秀琴. 铁路车轮、轮箍踏面剥离的类型及形成机理 [J]. 中国铁道科学, 2001, 22(2): 73–78. DOI: 10.3321/j.issn:1001-4632.2001.02.011.

    ZHANG B, FU X Q. Type and formation mechanism of railway wheel and tire tread spall [J]. China Railway Science, 2001, 22(2): 73–78. DOI: 10.3321/j.issn:1001-4632.2001.02.011.
    [6]
    CONG T, HAN J M, HONG Y S, et al. Shattered rim and shelling of high-speed railway wheels in the very-high-cycle fatigue regime under rolling contact loading [J]. Engineering Failure Analysis, 2019, 97: 556–567. DOI: 10.1016/j.engfailanal.2019.01.047.
    [7]
    张关震, 任瑞铭, 吴斯, 等. 不均匀组织对高速动车组车轮踏面剥离损伤的影响 [J]. 中国铁道科学, 2019, 40(5): 80–86. DOI: 10.3969/j.issn.1001-4632.2019.05.11.

    ZHANG G Z, REN R M, WU S, et al. Influence of non-uniform microstructure on shelling damage of wheel tread for high speed EMU [J]. China Railway Science, 2019, 40(5): 80–86. DOI: 10.3969/j.issn.1001-4632.2019.05.11.
    [8]
    CUMMINGS S M, LONSDALE C P. Wheel spalling literature review [C]//ASME 2008 Rail Transportation Division Fall Technical Conference. Chicago: ASME, 2008: 11–25. DOI: 10.1115/rtdf2008-74010.
    [9]
    陶贵闯, 赵秀娟, 潘金芝, 等. D2高速车轮钢在滑动磨损下的白层形成与剥落 [J]. 摩擦学学报, 2018, 38(4): 437–444. DOI: 10.16078/j.tribology.2018.04.008.

    TAO G C, ZHAO X J, PAN J Z, et al. Formation and exfoliation of the white etching layer of D2 high speed wheel steel under sliding wear [J]. Tribology, 2018, 38(4): 437–444. DOI: 10.16078/j.tribology.2018.04.008.
    [10]
    ZENG D F, LU L T, GONG Y H, et al. Influence of solid solution strengthening on spalling behavior of railway wheel steel [J]. Wear, 2017, 372/373: 158–168. DOI: 10.1016/j.wear.2016.12.025.
    [11]
    WANG W J, GUO J, LIU Q Y. Experimental study on wear and spalling behaviors of railway wheel [J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1243–1249. DOI: 10.3901/cjme.2013.06.1243.
    [12]
    郭俊, 王文健, 张伟, 等. 车轮踏面剥离试验研究 [J]. 铁道车辆, 2006, 44(4): 1–4. DOI: 10.3969/j.issn.1002-7602.2006.04.001.

    GUO J, WANG W J, ZHANG W, et al. Test and research on wheel tread peeling [J]. Rolling Stock, 2006, 44(4): 1–4. DOI: 10.3969/j.issn.1002-7602.2006.04.001.
    [13]
    KATO T, KATO H, MAKINO T, et al. Effect of elevated temperature on shelling property of railway wheel steel [J]. Wear, 2016, 366/367: 359–367. DOI: 10.1016/j.wear.2016.04.015.
    [14]
    CUMMINGS S M, MCCABE T, GOSSELIN D. Brake shoes and thermal mechanical shelling [C]//ASME 2008 Rail Transportation Division Fall Technical Conference. Chicago: ASME, 2009: 73-78. DOI: 10.1115/rtdf2008-74016.
    [15]
    王晨, 马卫华, 罗世辉, 等. 机车车辆踏面损伤机理研究 [J]. 振动、测试与诊断, 2016, 36(5): 890–896. DOI: 10.16450/j.cnki.issn.1004-6801.2016.05.011.

    WANG C, MA W H, LUO S H, et al. Research on the tread damage of locomotives [J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(5): 890–896. DOI: 10.16450/j.cnki.issn.1004-6801.2016.05.011.
    [16]
    LIU W, MA W H, LUO S H, et al. Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration [J]. Vehicle System Dynamics, 2015, 53(4): 546–567. DOI: 10.1080/00423114.2015.1008015.
    [17]
    КРАСНОВ О Г, 宋忠明. 车轮踏面出现缺陷时转向架承载铸件的承载能力 [J]. 国外机车车辆工艺, 2017(5): 30–35.

    КРАСНОВ О Г, SONG Z M. Bearing capacity of bogie bearing castings with defects on wheel tread [J]. Foreign Locomotive & Rolling Stock Technology, 2017(5): 30–35.
    [18]
    汪金余. 车轮内部损伤及踏面剥离的研究 [D]. 大连: 大连交通大学, 2018: 48−52.
    [19]
    中国铁路总公司. 铁路技术管理规程: 高速铁路部分 [M]. 北京: 中国铁道出版社, 2014: 31−33.
    [20]
    中国铁路总公司. 铁路动车组运用维修规则 [M]. 北京: 中国铁道出版社, 2017: 41−87.
    [21]
    高义刚, 何庆复, 柳拥军. 车轮踏面损伤对策及其容限标准的修订 [J]. 铁道机车车辆, 2002(5): 20–23. DOI: 10.3969/j.issn.1008-7842.2002.05.007.

    GAO Y G, HE Q F, LIU Y J. Method of reducing wheel tread and the revision of tolerance criterion [J]. Railway Locomotive & Car, 2002(5): 20–23. DOI: 10.3969/j.issn.1008-7842.2002.05.007.
    [22]
    ZHAO X, WEN Z F, ZHU M H, et al. A study on high-speed rolling contact between a wheel and a contaminated rail [J]. Vehicle System Dynamics, 2014, 52(10): 1270–1287. DOI: 10.1080/00423114.2014.934845.
    [23]
    JING L, HAN L L. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress [J]. Vehicle System Dynamics, 2017, 55(12): 1946–1972. DOI: 10.1080/00423114.2017.1340651.
    [24]
    韩亮亮, 敬霖, 赵隆茂. 基于Cowper-Symonds本构模型铁路车轮扁疤激发的轮轨冲击仿真分析 [J]. 高压物理学报, 2017, 31(6): 785–793. DOI: 10.11858/gywlxb.2017.06.014.

    HAN L L, JING L, ZHAO L M. Finite element simulation of the flat-induced wheel-rail impact based on the Cowper-Symonds empirical mode [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 785–793. DOI: 10.11858/gywlxb.2017.06.014.
    [25]
    LIU K, JING L. A finite element analysis-based study on the dynamic wheel-rail contact behaviour caused by wheel polygonization [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1285–1298. DOI: 10.1177/0954409719891549.
    [26]
    WEI Z L, SHEN C, LI Z L, et al. Wheel-rail impact at crossings: relating dynamic frictional contact to degradation [J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 041016. DOI: 10.1115/1.4035823.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (326) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return