Citation: | CHENG Fangming, NAN Fan, XIAO Yang, LUO Zhenmin, NIU Qiaoxia. Experimental study on the suppression of methane-air explosion by CF3I and CO2[J]. Explosion And Shock Waves, 2022, 42(6): 065402. doi: 10.11883/bzycj-2021-0386 |
[1] |
张景林. 气体、粉尘爆炸灾害及其安全技术 [J]. 中国安全科学学报, 2002, 12(5): 9–14. DOI: 10.16265/j.cnki.issn1003-3033.2002.05.003.
ZHANG J L. Explosion disaster due to gas & dust and its safety technology [J]. China Safety Science Journal, 2002, 12(5): 9–14. DOI: 10.16265/j.cnki.issn1003-3033.2002.05.003.
|
[2] |
MITU M, PRODAN M, GIURCAN V, et al. Influence of inert gas addition on propagation indices of methane-air deflagrations [J]. Process Safety and Environmental Protection, 2016, 102: 513–522. DOI: 10.1016/j.psep.2016.05.007.
|
[3] |
路长, 刘洋, 王鸿波, 等. CO2、H2对CH4/Air预混气爆炸特性的影响 [J]. 安全与环境学报, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.
LU C, LIU Y, WANG H B, et al. Experimental study of the effects of CO2/H2 on the characteristic features of methane/air bursts [J]. Journal of Safety and Environment, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.
|
[4] |
WU S Y, LIN N K, SHU C M. Effects of flammability characteristics of methane with three inert gases [J]. Process Safety Progress, 2010, 29(4): 349–352. DOI: 10.1002/prs.10411.
|
[5] |
GAO H B, QU Z G, TAO W Q, et al. Experimental investigation of methane/(Ar, N2, CO2)-air mixture combustion in a two-layer packed bed burner [J]. Experimental Thermal and Fluid Science, 2013, 44: 599–606. DOI: 10.1016/j.expthermflusci.2012.08.023.
|
[6] |
LIANG Y T, ZENG W, HU E J. Experimental study of the effect of nitrogen addition on gas explosion [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 1–9. DOI: 10.1016/j.jlp.2012.08.002.
|
[7] |
张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.
ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.
|
[8] |
WANG Z R, NI L, LIU X, et al. Effects of N2/CO2 on explosion characteristics of methane and air mixture [J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 10–15. DOI: 10.1016/j.jlp.2014.06.004.
|
[9] |
LI M H, XU J C, WANG C J, et al. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N2/CO2 in a closed compartment [J]. Fuel, 2019, 255: 115747. DOI: 10.1016/j.fuel.2019.115747.
|
[10] |
CHEN D G, YAO Y, DENG Y J. The influence of N2/CO2 blends on the explosion characteristics of stoichiometric methane-air mixture [J]. Process Safety Progress, 2019, 38(2): e12015. DOI: 10.1002/prs.12015.
|
[11] |
DI BENEDETTO A, DI SARLI V, SALZANO E, et al. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures [J]. International Journal of Hydrogen Energy, 2009, 34(16): 6970–6978. DOI: 10.1016/j.ijhydene.2009.05.120.
|
[12] |
ZENG W, MA H, LIANG Y T, et al. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture [J]. Journal of Advanced Research, 2015, 6(2): 189–201. DOI: 10.1016/j.jare.2014.01.003.
|
[13] |
周福宝, 王德明, 章永久, 等. 含氮气三相泡沫惰化火区的机理及应用研究 [J]. 煤炭学报, 2005, 30(4): 443–446. DOI: 10.3321/j.issn:0253-9993.2005.04.008.
ZHOU F B, WANG D M, ZHANG Y J, et al. Inerting mechanism of three-phase foam containing nitrogen and its application to underground fire zone [J]. Journal of China Coal Society, 2005, 30(4): 443–446. DOI: 10.3321/j.issn:0253-9993.2005.04.008.
|
[14] |
罗振敏, 康凯. CO2抑制甲烷-空气链式爆炸微观机理的仿真分析 [J]. 中国安全科学学报, 2015, 25(5): 42–48. DOI: 10.16265/j.cnki.issn1003-3033.2015.05.008.
LUO Z M, KANG K. Simulative analysis of microscopic mechanism of CO2 inhibiting methane-air chain explosion [J]. China Safety Science Journal, 2015, 25(5): 42–48. DOI: 10.16265/j.cnki.issn1003-3033.2015.05.008.
|
[15] |
HALTER F, FOUCHER F, LANDRY L, et al. Effect of dilution by nitrogen and/or carbon dioxide on methane and iso-octane air flames [J]. Combustion Science & Technology, 2009, 181(6): 813–827. DOI: 10.1080/00102200902864662.
|
[16] |
邱雁, 高广伟, 罗海珠. 充注惰气抑制矿井火区瓦斯爆炸机理 [J]. 煤矿安全, 2003, 34(2): 8–11. DOI: 10.3969/j.issn.1003-496X.2003.02.005.
QIU Y, GAO G W, LUO H Z. Mechanism of pumping inert gas into mine fire area for inhibition of methane explosion [J]. Safety in Coal Mines, 2003, 34(2): 8–11. DOI: 10.3969/j.issn.1003-496X.2003.02.005.
|
[17] |
PAGLIARO J L, LINTERIS G T, SUNDERLAND P B, et al. Combustion inhibition and enhancement of premixed methane-air flames by halon replacements [J]. Combustion and Flame, 2015, 162(1): 41–49. DOI: 10.1016/j.combustflame.2014.07.006.
|
[18] |
WILLIAMS B A, L’ESPÉRANCE D M, FLEMING J W. Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: comparison of experimental data with kinetic modeling [J]. Combustion & Flame, 2000, 120(1/2): 160–172. DOI: 10.1016/S0010-2180(99)00081-4.
|
[19] |
薛少谦. 七氟丙烷抑制甲烷空气预混气体爆炸的实验研究 [J]. 矿业安全与环保, 2017, 44(1): 5–8. DOI: 10.3969/j.issn.1008-4495.2017.01.002.
XUE S Q. Experimental research on premixed methane-air explosion suppression with heptafluoropropane [J]. Mining Safety & Environmental Protection, 2017, 44(1): 5–8. DOI: 10.3969/j.issn.1008-4495.2017.01.002.
|
[20] |
李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究[D]. 辽宁大连: 大连理工大学, 2018.
LI Y M. Experimental study of suppressing the methane/air explosion by heptafluoropropane [D]. Dalian, Liaoning, China: Dalian University of Technology, 2018.
|
[21] |
詹平, 钱华, 刘大斌, 等. CF3I对R290的抑爆性能研究 [J]. 工业安全与环保, 2018, 44(9): 49–51. DOI: 10.3969/j.issn.1001-425X.2018.09.013.
ZHAN P, QIAN H, LIU D B, et al. Study of the explosion suppression performance of CF3I on R290 [J]. Industrial Safety and Environmental Protection, 2018, 44(9): 49–51. DOI: 10.3969/j.issn.1001-425X.2018.09.013.
|
[22] |
MATHIEU O, GOULIER J, GOURMEL F, et al. Experimental study of the effect of CF3I addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane [J]. Proceedings of the Combustion Institute, 2015, 35(3): 2731–2739. DOI: 10.1016/j.proci.2014.05.096.
|
[23] |
LUO C M, DLUGOGORSKI B, KENNEDY E, et al. Inhibition of premixed methane-air flames with CF3I [J]. Chemical Product and Process Modeling, 2009, 4(3): Article 12. DOI: 10.2202/1934-2659.1448.
|
[24] |
BABUSHOK V, NOTO T, BURGESS D R F, et al. Influence of CF3I, CF3Br, and CF3H on the high-temperature combustion of methane [J]. Combustion and Flame, 1996, 107(4): 351–367. DOI: 10.1016/S0010-2180(96)00052-1.
|
[25] |
LUO C M, DLUGOGORSKI B Z, KENNEDY E M. Influence of CF3I and CBrF3 on methanol-air and methane-air premixed flames [J]. Fire Technology, 2008, 44(3): 221–237. DOI: 10.1007/s10694-007-0033-5.
|
[26] |
NOTO T, BABUSHOK V, BURGESS D R JR, et al. Effect of halogenated flame inhibitors on C1-C2 organic flames [J]. Symposium (International) on Combustion, 1996, 26(1): 1377–1383. DOI: 10.1016/S0082-0784(96)80357-2.
|
[27] |
段远源, 史琳, 朱明善, 等. 三氟碘甲烷(CF3I)的热物理性质 [J]. 清华大学学报(自然科学版), 2000, 40(6): 60–63. DOI: 10.3321/j.issn:1000-0054.2000.06.018.
DUAN Y Y, SHI L, ZHU M S, et al. Thermophysical properties of trifluoroiodomethane (CF3I) [J]. Journal of Tsinghua University (Science and Technology), 2000, 40(6): 60–63. DOI: 10.3321/j.issn:1000-0054.2000.06.018.
|
[28] |
吕咏梅. 三氟碘甲烷合成与应用进展 [J]. 有机氟工业, 2010(1): 33–35.
LV Y M. Progress in the application of trifluoroiodomethane [J]. Organo-Fluorine Industry, 2010(1): 33–35.
|
[29] |
周黎旸. 三氟碘甲烷应用进展 [J]. 化工生产与技术, 2009, 16(4): 5–6. DOI: 10.3969/j.issn.1006-6829.2009.04.002.
ZHOU L Y. Application progress of trifluoromethyl iodide [J]. Chemical Production and Technology, 2009, 16(4): 5–6. DOI: 10.3969/j.issn.1006-6829.2009.04.002.
|
[30] |
陶贤文, 李绯, 袁国清, 等. CF3I气体自动灭火系统在外浮顶油罐中的应用 [J]. 油气田地面工程, 2016, 35(4): 1–3; 7. DOI: 10.3969/j.issn.1006-6896.2016.4.001.
TAO X W, LI F, YUAN G Q, et al. Application of CF3I automatically suppression system on open-top floating roof tanks [J]. Oil-Gas Field Surface Engineering, 2016, 35(4): 1–3; 7. DOI: 10.3969/j.issn.1006-6896.2016.4.001.
|
[31] |
蔡凡一, 薛健, 谭东现, 等. 三氟碘甲烷在有功负载电流下分解特性研究 [J]. 云南电力技术, 2019, 47(4): 8–12; 25. DOI: 10.3969/j.issn.1006-7345.2019.04.002.
CAI F Y, XUE J, TAN D X, et al. Decomposition products analysis of trifluoroiodomethane (CF3I) under load current interruption [J]. Yunnan Electric Power, 2019, 47(4): 8–12; 25. DOI: 10.3969/j.issn.1006-7345.2019.04.002.
|
[32] |
邢其毅, 裴伟伟, 徐瑞秋, 等. 基础有机化学(上册) [M]. 4版. 北京: 北京大学出版社, 2016.
XING Q Y, PEI W W, XU R Q, et al. Basic organic chemistry (Ⅰ) [M]. 4th ed. Beijing, China: Peking University Press, 2016.
|
[1] | LIU Jinchun, WANG Yuying, SUN Ni. Numerical simulation of dynamic response of reinforced masonry wall strengthened with polyurea under gas explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101405. doi: 10.11883/bzycj-2024-0077 |
[2] | ZHANG Suoshuo, NIE Jianxin, ZHANG Jian, SUN Xiaole, GUO Xueyong, ZHANG Tao. Sympathetic detonation of explosive charge in confined space and its protection[J]. Explosion And Shock Waves, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456 |
[3] | ZHAO Xiaohua, LIU Shucan, FANG Hongyuan, SUN Jinshan, SHI Mingsheng. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125102. doi: 10.11883/bzycj-2023-0033 |
[4] | MA Yinliang, ZHANG Pan, CHENG Yuansheng, LIU Jun. Design of corner connection structures of box-type cabins subjected to internal blast loading[J]. Explosion And Shock Waves, 2022, 42(12): 125102. doi: 10.11883/bzycj-2021-0437 |
[5] | ZHENG Zhihao, REN Huiqi, LONG Zhilin, GUO Ruiqi, CAI Yang, LI Zhijian. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion And Shock Waves, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297 |
[6] | YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214 |
[7] | WANG Ziguo, WANG Songtao, KONG Xiangzhen, SUN Yuyan. Anti-penetration capability of pre-stressed confined concrete with truncated cone[J]. Explosion And Shock Waves, 2022, 42(10): 103303. doi: 10.11883/bzycj-2022-0030 |
[8] | SONG Guangming, LI Ming, WU Qiang, GONG Zizheng, ZHANG Pinliang, CAO Yan. Debris cloud characteristics of graded-impedance shields under hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299 |
[9] | WU Kai, WANG Xianhui, ZHOU Yunbo, BI Zheng, LI Mingxing. Optimization of vehicle protection components based on reliability[J]. Explosion And Shock Waves, 2021, 41(3): 035101. doi: 10.11883/bzycj-2020-0126 |
[10] | SONG Ge, LONG Yuan, ZHONG Mingshou, WANG min, WU Jianyu. Similarity relations of underwater explosion in centrifuge and pressurizing vessels[J]. Explosion And Shock Waves, 2019, 39(2): 024102. doi: 10.11883/bzycj-2017-0321 |
[11] | ZHANG Yongkang, LI Yulong, TANG Zhongbin, YANG Hong, XU Hai. Dynamic response of aluminum-foam-based sandwich panelsunder hailstone impact[J]. Explosion And Shock Waves, 2018, 38(2): 373-380. doi: 10.11883/bzycj-2016-0232 |
[12] | Li Rujiang, Chai Yanjun, Han Hongwei, Liu Tiansheng. Protective performance of explosive reactive armor with composite rubber armor as front or back plate[J]. Explosion And Shock Waves, 2017, 37(4): 637-642. doi: 10.11883/1001-1455(2017)04-0637-06 |
[13] | Chen Mingsheng, Chun Hua, Li Jianping. Simulation of blast waves interaction for multiple cloud explosion[J]. Explosion And Shock Waves, 2016, 36(1): 81-86. doi: 10.11883/1001-1455(2016)01-0081-06 |
[14] | Li Li-sha, Du Jian-guo, Zhang Hong-hai, Xie Qing-liang. Numerical simulation of damage of brick wall subjected to blast shock vibration[J]. Explosion And Shock Waves, 2015, 35(4): 459-466. doi: 10.11883/1001-1455(2015)04-0459-08 |
[15] | Li Ru-jiang, Han Hong-wei, Sun Su-jie, Liu Tian-sheng. Ballistic resistance capabilities of explosive reactive armors encapsulated by ceramic layers[J]. Explosion And Shock Waves, 2014, 34(1): 47-51. doi: 10.11883/1001-1455(2014)01-0047-05 |
[16] | Zhu Jun, Yang Jian-hua, Lu Wen-bo, Chen Ming, Yan Peng. Influences of blasting vibration on the sidewall of underground tunnel[J]. Explosion And Shock Waves, 2014, 34(2): 153-160. doi: 10.11883/1001-1455(2014)02-0153-08 |
[17] | WuHe-xiang, LiuYing. Influencesofdensitygradientvariationonmechanicalperformances ofdensity-gradedhoneycombmaterials[J]. Explosion And Shock Waves, 2013, 33(2): 163-168. doi: 10.11883/1001-1455(2013)02-0163-06 |
[18] | LAI Ming, FENG Shun-shan, HUANG Guang-yan, BIAN Jiang-nan. Damageofdifferentreinforcedstructures subjectedtounderwatercontactexplosion[J]. Explosion And Shock Waves, 2012, 32(6): 599-604. doi: 10.11883/1001-1455(2012)06-0599-05 |
[19] | TIAN Yu-bin, LI Zhao, ZHANG Chun-wei. Dynamicresponseofreinforcedmasonrystructureunderblastload[J]. Explosion And Shock Waves, 2012, 32(6): 658-662. doi: 10.11883/1001-1455(2012)06-0658-05 |
[20] | CHEN Yong, HUA Hong-xing, WANG Yu, GOU Hou-yu. Protective effects of hyper-elastic sandwiches coated onto metal boxes subjected to underwater explosion[J]. Explosion And Shock Waves, 2009, 29(4): 395-400. doi: 10.11883/1001-1455(2009)04-0395-06 |
1. | 杜明燃,陈智凡,陆少锋,梁进,李基锐,王尹军,王天照,陈宇航. 供风量与气泡帷幕层数协同下水中爆炸冲击波的削波效果. 高压物理学报. 2024(01): 165-173 . ![]() | |
2. | 郭军,米鑫程,冯国瑞,白锦文,文晓泽,朱林俊,王子,皇文博. 基于液电效应的高压电脉冲岩体致裂特征及机理. 煤炭学报. 2024(05): 2270-2282 . ![]() | |
3. | 农志祥,吴红波,王尹军,李基锐,马成帅,叶风明,徐君. 多层气泡帷幕对水下爆炸防护能力的研究. 工程爆破. 2024(03): 136-142 . ![]() | |
4. | 陆少锋,吴红波,马成帅,王尹军,李基锐. 不同孔间距的气泡帷幕对水中冲击波衰减特性的影响. 爆破器材. 2024(04): 52-57 . ![]() | |
5. | 范怀斌,陆少锋,莫崇勋,刁约,覃才勇,黄国松. 多层差异性气泡帷幕对水下爆破冲击波的衰减效应的试验研究. 爆破器材. 2023(02): 48-55 . ![]() | |
6. | 范怀斌,陆少锋,程扬帆,覃才勇,刁约. 组合帷幕阻波帘对水下冲击波的防护特性分析. 科学技术与工程. 2023(17): 7520-7526 . ![]() | |
7. | 陆浩然,孙海亮,马强,李海涛,于丽晶,马明辉,孙宇新. 水下环境爆炸对方形水池冲击载荷数值模拟研究. 强度与环境. 2022(05): 12-19 . ![]() | |
8. | 司剑峰,钟冬望,李雷斌. 基于气泡形态影响的水下气幕对冲击波衰减效果分析. 爆炸与冲击. 2021(07): 71-79 . ![]() |