Volume 42 Issue 8
Sep.  2022
Turn off MathJax
Article Contents
JIANG Wencan, CHENG Xiangzhen, LIANG Bin, NIE Yuan, LU Yonggang. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner[J]. Explosion And Shock Waves, 2022, 42(8): 083303. doi: 10.11883/bzycj-2021-0389
Citation: JIANG Wencan, CHENG Xiangzhen, LIANG Bin, NIE Yuan, LU Yonggang. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner[J]. Explosion And Shock Waves, 2022, 42(8): 083303. doi: 10.11883/bzycj-2021-0389

Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner

doi: 10.11883/bzycj-2021-0389
  • Received Date: 2021-09-16
  • Rev Recd Date: 2022-03-28
  • Available Online: 2022-03-30
  • Publish Date: 2022-09-09
  • In order to study the damage mechanism of the shaped charge warhead with a combined charge liner to the water containing composite structure, the formation and penetration process of the penetrator formed by the combined charge liner were studied based on the arbitrary Lagrangian-Euler (ALE) fluid structure coupling algorithm in the LS-DYNA. The damage of the shaped charge warhead with composite liner to the target was verified by experiments. A hemispherical liner eccentric to the axis was designed at the top of the original eccentric sub-hemispherical liner. The forming process of the penetrator, the response state of the water medium, the dynamic energy loss in the process of penetrating the target and the damage mechanism to the target were analyzed for the warhead with the combined liner. The results show that the design of the sub-hemispherical liner on the top of the eccentric sub-hemispherical liner can form a slender rod-like jet at the front of the penetrator, which can increase the whole length of the penetrator and the velocity of the head penetrator. In the process of the target, the head rod-like penetrators form a cavity to help the subsequent penetrators follow with low resistance. Through the analysis of the damage process to the target, it is found that the first layer of target directly connected with the warhead will be affected by both the high-speed impact of the penetrator and the strong shock wave transmitted by the explosion wave along the water medium. With the increase of the thickness of the water layer, the intensity of the explosion shock wave propagating along the water will be rapidly attenuated, and the effect of the explosion shock wave becomes less obvious to the subsequent target. The experimental verification was carried out by the warhead with composite liner structure. The perforation size of each target was compared and analyzed. The experimental results are in good agreement with the numerical simulation results, and the maximum error is within 15%.
  • loading
  • [1]
    谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.

    TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.
    [2]
    梁争峰, 胡焕性. 爆炸成形弹丸技术现状与发展 [J]. 火炸药学报, 2004, 27(4): 21–25. DOI: 10.3969/j.issn.1007-7812.2004.04.006.

    LIANG Z F, HU H X. The current situation and future development direction of explosively formed projectile technology [J]. Chinese Journal of Explosives & Propellants, 2004, 27(4): 21–25. DOI: 10.3969/j.issn.1007-7812.2004.04.006.
    [3]
    吴晗玲, 段卓平, 汪永庆. 杆式射流形成的数值模拟研究 [J]. 爆炸与冲击, 2006, 26(4): 328–332. DOI: 10.11883/1001-1455(2006)04-0328-05.

    WU H L, DUAN Z P, WANG Y Q. Simulation investigation of rod-like jets [J]. Explosion and Shock Waves, 2006, 26(4): 328–332. DOI: 10.11883/1001-1455(2006)04-0328-05.
    [4]
    徐斌, 王成, 徐文龙. 高速杆式射流形成的数值模拟与实验研究 [J]. 北京理工大学学报, 2018, 38(4): 331–337. DOI: 10.15918/j.tbit1001-0645.2018.04.001.

    XU B, WANG C, XU W L. Numerical simulation and experiment investigation on hypervelocity jetting projectile charge formation [J]. Transactions of Beijing Institute of Technology, 2018, 38(4): 331–337. DOI: 10.15918/j.tbit1001-0645.2018.04.001.
    [5]
    王利侠, 谷鸿平, 丁刚, 等. 聚能射流对带壳浇注PBX装药的撞击响应 [J]. 含能材料, 2015, 23(11): 1067–1072. DOI: 10.11943/j.issn.1006-9941.2015.11.006.

    WANG L X, GU H P, DING G, et al. Reaction characteristics for shelled cast-cured PBX explosive impacted by shaped charge jet [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1067–1072. DOI: 10.11943/j.issn.1006-9941.2015.11.006.
    [6]
    王海福, 江增荣, 李向荣. 药型罩参数对聚能装药水下作用效应的影响 [J]. 北京理工大学学报, 2006, 26(5): 405–409. DOI: 10.3969/j.issn.1001-0645.2006.05.007.

    WANG H F, JIANG Z R, LI X R. Influences of liner parameters on the effects of shaped charge operating underwater [J]. Transactions of Beijing Institute of Technology, 2006, 26(5): 405–409. DOI: 10.3969/j.issn.1001-0645.2006.05.007.
    [7]
    周方毅, 詹发民, 姜涛, 等. 一种组合药型罩聚能战斗部 [J]. 鱼雷技术, 2012, 20(5): 380–383; 400. DOI: 10.3969/j.issn.1673-1948.2012.05.014.

    ZHOU F Y, ZHAN F M, JIANG T, et al. An idea about shaped charge warhead with combined charge liner for torpedo [J]. Torpedo Technology, 2012, 20(5): 380–383; 400. DOI: 10.3969/j.issn.1673-1948.2012.05.014.
    [8]
    周方毅, 黄雪峰, 詹发民, 等. 一种双球缺组合药型罩聚能鱼雷战斗部研究 [J]. 水下无人系统学报, 2017, 25(4): 278–281; 287. DOI: 10.11993/j.issn.2096-3920.2017.03.011.

    ZHOU F Y, ZHAN F M, JIANG T, et al. A shaped charge warhead with two spherical combined liners for torpedo [J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 278–281; 287. DOI: 10.11993/j.issn.2096-3920.2017.03.011.
    [9]
    张春辉, 张斐, 王志军, 等. 复合材质杆式射流侵彻水下目标的数值模拟 [J]. 爆破器材, 2019, 48(1): 8–14. DOI: 10.3969/j.issn.1001-8352.2019.01.002.

    ZHANG C H, ZHANG F, WANG Z J, et al. Numerical simulation of composite-material rod-like jet penetrating underwater targets [J]. Explosive Materials, 2019, 48(1): 8–14. DOI: 10.3969/j.issn.1001-8352.2019.01.002.
    [10]
    李兵, 刘念念, 陈高杰, 等. 水中聚能战斗部毁伤双层圆柱壳的数值模拟与试验研究 [J]. 兵工学报, 2018, 39(1): 38–45. DOI: 10.3969/j.issn.1000-1093.2018.01.004.

    LI B, LIU N N, CHEN G J, et al. Numerical simulation and experimental research on damage of shaped charge warhead to double-layer columniform shell [J]. Acta Armamentarii, 2018, 39(1): 38–45. DOI: 10.3969/j.issn.1000-1093.2018.01.004.
    [11]
    王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究 [J]. 兵器装备工程学报, 2021, 42(12): 112–116. DOI: 10.11809/bqzbgcxb2021.12.016.

    WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-Submarine torpedo warhead on typical submarine targets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116. DOI: 10.11809/bqzbgcxb2021.12.016.
    [12]
    王长利, 马坤, 周刚, 等. 防雷舱结构在聚能装药水下爆炸作用下的毁伤研究 [J]. 爆炸与冲击, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.

    WANG C L, MA K, ZHOU G, et al. Damage effect of cabin near ship board under shaped charge exploding underwater [J]. Explosion and Shock Waves, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.
    [13]
    王长利, 周刚, 马坤, 等. 典型含水复合结构在聚能装药水下爆炸作用下的毁伤 [J]. 船舶力学, 2018, 22(8): 1001–1010. DOI: 10.3969/j.issn.1007-7294.2018.08.010.

    WANG C L, ZHOU G, MA K, et al. Damage anlysis of typical water partitioned structure under shaped charge underwater explosion [J]. Journal of Ship Mechanics, 2018, 22(8): 1001–1010. DOI: 10.3969/j.issn.1007-7294.2018.08.010.
    [14]
    杨莉, 张庆明, 汪玉, 等. 反舰聚能战斗部装药结构研究 [J]. 兵工学报, 2009(S2): 154–158.

    YANG L, ZHANG Q M, WANG Y, et al. Research on shaped charge warhead of anti-ship missile [J]. Acta Armamentarii, 2009(S2): 154–158.
    [15]
    傅磊, 王伟力, 李永胜, 等. 组合药型罩水介质中成型的数值仿真 [J]. 鱼雷技术, 2015, 23(5): 367–373. DOI: 10.11993/j.issn.1673-1948.2015.05.009.

    FU L, WANG W L, LI Y S, et al. Numerical simulation of combined liner formation in water [J]. Torpedo Technology, 2015, 23(5): 367–373. DOI: 10.11993/j.issn.1673-1948.2015.05.009.
    [16]
    时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005: 295–296.
    [17]
    时党勇. 倾斜尾翼爆炸成型弹丸的数值模拟和外弹道计算 [C]// 第十届全国爆炸与安全技术会议论文集. 昆明: 2011, 286–292.
    [18]
    LEE S G, BAEK Y H, LEE I H, et al. Numerical simulation of 2D sloshing by using ALE2D technique of LS-DYNA and CCUP methods [C]// The Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference (ISOPE-2010 Beijing). International Society of Offshore and Polar Engineers (ISOPE), 2010: 192–199.
    [19]
    MULLIN M J, O’TOOLE B J. Simulation of energy absorbing materials in blast loaded structures [C]// 8th International LS-DYNA Users Conference. 2004: 2–7.
    [20]
    吴海军, 王可慧, 柯明, 等. 多点同步起爆条件下环形射流成型及侵彻过程的数值模拟 [J]. 现代应用物理, 2018, 9(2): 75–82. DOI: 10.12061/j.issn.2095-6223.2018.021002.

    WU H J, WANG K H, KE M, et al. Numerical simulation on formation and penetration processes of the annular jet with multi-points synchronous explosive circuit [J]. Modern Applied Physics, 2018, 9(2): 75–82. DOI: 10.12061/j.issn.2095-6223.2018.021002.
    [21]
    ROBBINS J R, DING J L, GUPTA Y M. Load spreading and penetration resistance of layered structures-a numerical study [J]. International Journal of Impact Engineering, 2004, 30(6): 593–615. DOI: 10.1016/j.ijimpeng.2003.08.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (786) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return