Citation: | HAN Wenhu, ZHANG Bo, WANG Cheng. Progress in studying mechanisms of initiation and propagation for gaseous detonations[J]. Explosion And Shock Waves, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398 |
[1] |
LEE J H S. The detonation phenomenon [M]. Cambridge: Cambridge University Press, 2008.
|
[2] |
范玮, 李建玲. 爆震组合循环发动机研究导论 [M]. 北京: 科学出版社, 2014.
|
[3] |
ZHOU R, WANG J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines [J]. Combustion and Flame, 2012, 159(12): 3632–3645. DOI: 10.1016/j.combustflame.2012.07.007.
|
[4] |
TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations [J]. Journal of Fluid Mechanics, 2014, 744: 111–128. DOI: 10.1017/jfm.2014.78.
|
[5] |
POLUDNENKO A Y, CHAMBERS J, AHMED K, et al. A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae [J]. Science, 2019, 366(6465): eaau7365. DOI: 10.1126/science.aau7365.
|
[6] |
SHEPHERD J E. Detonation in gases [J]. Proceedings of the Combustion Institute, 2009, 32(1): 83–98. DOI: 10.1016/j.proci.2008.08.006.
|
[7] |
CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499–550. DOI: 10.1016/j.pecs.2007.11.002.
|
[8] |
ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. DOI: 10.1016/j.pecs.2004.05.001.
|
[9] |
ORAN E S, GAMEZO V N. Origins of the deflagration-to-detonation transition in gas-phase combustion [J]. Combustion and Flame, 2007, 148(1): 4–47. DOI: 10.1016/j.combustflame.2006.07.010.
|
[10] |
姜宗林, 滕宏辉. 气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究 [J]. 中国科学: 物理学 力学 天文学, 2012, 42(4): 421−435. DOI: 10.1360/132011-945.
JIANG Z L, TENG H H. Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42: 421–435. DOI: 10.1360/132011-945.
|
[11] |
姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展 [J]. 力学进展, 2012, 42(2): 129–140. DOI: 10.6052/1000-0992-2012-2-20120202.
JIANG Z L, TENG H H, LIU Y F. Some research progress on gaseous detonation physics [J]. Advances in Mechanics, 2012, 42(2): 129–140. DOI: 10.6052/1000-0992-2012-2-20120202.
|
[12] |
ZHANG B, BAI C H. Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels–an overview [J]. Fuel, 2014, 117: 294–308. DOI: 10.1016/j.fuel.2013.09.042.
|
[13] |
张博, 白春华. 气相爆轰动力学特征研究进展 [J]. 中国科学: 物理学 力学 天文学, 2014, 44(7): 665−681. DOI: 10.1360/N132013-00028.
ZHANG B, BAI C H. Research progress on the dynamic characteristics of gaseous detonation [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44: 665–681. DOI: 10.1360/N132013-00028.
|
[14] |
范宝春, 张旭东, 潘振华, 等. 用于推进的三种爆轰波的结构特征 [J]. 力学进展, 2021, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.
FAN B C, ZHANG X D, PAN Z H, et al. Fundamental characteristics of three types of detonation waves utilized in propulsion [J]. Advances in Mechanics, 2021, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.
|
[15] |
王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展 [J]. 实验流体力学, 2015, 29(4): 12–25. DOI: 10.11729/syltlx20150048.
WANG J P, ZHOU R, WU D. Progress of continuously rotating detonation engine research [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12–25. DOI: 10.11729/syltlx20150048.
|
[16] |
王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展 [J]. 推进技术, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109.
WANG B, XIE Q F, WEN H C, et al. Reseach progress of detonation engine [J]. Jounal of Propusion Technology, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109.
|
[17] |
WOLAŃSKI P. Detonative propulsion [J]. Proceedings of the Combustion Institute, 2013, 34(1): 125–158. DOI: 10.1016/j.proci.2012.10.005.
|
[18] |
OPPENHEIM A K. A contribution to the theory of the development and stability of detonation in gases [J]. Journal of Applied Mechanics, 1952, 19(1): 63–71. DOI: 10.1115/1.4010408.
|
[19] |
OPPENHEIM A K, STERN R A. On the development of gaseous detonation—analysis of wave phenomena [J]. Symposium (International) on Combustion, 1958, 7(1): 837–850. DOI: 10.1016/S0082-0784(58)80127-7.
|
[20] |
URTIEW P A, OPPENHEIM A K. Experimental observations of the transition to detonation in an explosive gas [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295(1440): 13–28. DOI: 10.1098/rspa.1966.0223.
|
[21] |
DAI P, QI C, CHEN Z. Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient [J]. Proceedings of the Combustion Institute, 2017, 36: 3643–3650. DOI: 10.1016/j.proci.2016.08.014.
|
[22] |
MEYER J W, OPPENHEIM A K. On the shock-induced ignition of explosive gases [J]. Symposium (International) on Combustion, 1971, 13(1): 1153–1164. DOI: 10.1016/S0082-0784(71)80112-1.
|
[23] |
VALIEV D M, BYCHKOV V, AKKERMAN V, et al. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration [J]. Physical Review E, 2009, 80(3): 036317. DOI: 10.1103/PhysRevE.80.036317.
|
[24] |
LIBERMAN M A, IVANOV M F, PEIL O E, et al. Self-acceleration and fractal structure of outward freely propagating flames [J]. Physics of Fluids, 2004, 16(7): 2476–2482. DOI: 10.1063/1.1729852.
|
[25] |
HE L T, CLAVIN P. Critical conditions for detonation initiation in cold gaseous mixtures by nonuniform hot pockets of reactive gases [J]. Symposium (International) on Combustion, 1992, 24(1): 1861–1867. DOI: 10.1016/S0082-0784(06)80218-3.
|
[26] |
BRADLEY D, CRESSWELL T M, PUTTOCK J S. Flame acceleration due to flame-induced instabilities in large-scale explosions [J]. Combustion and Flame, 2001, 124(4): 551–559. DOI: 10.1016/S0010-2180(00)00208-X.
|
[27] |
WANG C, QIAN C G, LIU J N, et al. Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air [J]. Combustion and Flame, 2018, 197: 400–415. DOI: 10.1016/j.combustflame.2018.08.017.
|
[28] |
LIBERMAN M, WANG C, QIAN C G, et al. Influence of chemical kinetics on spontaneous waves and detonation initiation in highly reactive and low reactive mixtures [J]. Combustion Theory and Modelling, 2019, 23(3): 467–495. DOI: 10.1080/13647830.2018.1551578.
|
[29] |
PAN J Y, DONG S, WEI H Q, et al. Temperature gradient induced detonation development inside and outside a hotspot for different fuels [J]. Combustion and Flame, 2019, 205: 269–277. DOI: 10.1016/j.combustflame.2019.04.003.
|
[30] |
HAN W H, LIANG W K, WANG C, et al. Spontaneous initiation and development of hydrogen-oxygen detonation with ozone sensitization [J]. Proceedings of the Combustion Institute, 2021, 38(3): 3575–3583. DOI: 10.1016/j.proci.2020.06.239.
|
[31] |
BURKE M P, CHAOS M, JU Y G, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion [J]. International Journal of Chemical Kinetics, 2012, 44(7): 444–474. DOI: 10.1002/kin.20603.
|
[32] |
KIVERIN A D, KASSOY D R, IVANOV M F, et al. Mechanisms of ignition by transient energy deposition: regimes of combustion wave propagation [J]. Physical Review E, 2013, 87(3): 033015. DOI: 10.1103/PhysRevE.87.033015.
|
[33] |
DAI P , CHEN Z, GAN X H, et al. Autoignition and detonation development from a hot spot inside a closed chamber: Effect of end wall reflection [J]. Proceedings of the Combustion Institute, 2021, 4: 5905–5913. DOI: 10.1016/j.proci.2020.09.025.
|
[34] |
HE L T, CLAVIN P. Theoretical and numerical analysis of the photochemical initiation of detonations in hydrogen-oxygen mixtures [J]. Symposium (International) on Combustion, 1994, 25(1): 45–51.
|
[35] |
RADULESCU M I, SHARPE G J, BRADLEY D. A universal parameter for quantifying explosion hazards, detonability and hot spot formation, the χ number [C] // Proceedings of the Seventh International Seminar on Fire and Explosion Hazards. Singapore: Research Publishing, 2013: 617−626.
|
[36] |
NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. DOI: 10.1080/13647830500307758.
|
[37] |
RADULESCU M I, NG H D, LEE J H S, et al. The effect of argon dilution on the stability of acetylene/oxygen detonations [J]. Proceedings of the Combustion Institute, 2002, 29(2): 2825–2831. DOI: 10.1016/S1540-7489(02)80345-5.
|
[38] |
SHCHELKIN K I. Influence of tube roughness on the formation and detonation propagation in gas [J]. Journal of Experimental and Theoretical Physics, 1940, 10: 823–827.
|
[39] |
MALLARD E, LE CHATELIER H. Thermal model for flame propagation [J]. Annales des Mines, 1883, 4: 379–568.
|
[40] |
HAN W H, GAO Y, LAW C K. Flame acceleration and deflagration-to-detonation transition in micro-and macro-channels: an integrated mechanistic study [J]. Combustion and Flame, 2017, 176: 285–298. DOI: 10.1016/j.combustflame.2016.10.010.
|
[41] |
LIBERMAN M A, IVANOV M F, KIVERIN A D, et al. Deflagration-to-detonation transition in highly reactive combustible mixtures [J]. Acta Astronautica, 2010, 67(7–8): 688–701. DOI: 10.1016/j.actaastro.2010.05.024.
|
[42] |
GAMEZO V N, KHOKHLOV A M, ORAN E S. The influence of shock bifurcations on shock-flame interactions and DDT [J]. Combustion and Flame, 2001, 126(4): 1810–1826. DOI: 10.1016/S0010-2180(01)00291-7.
|
[43] |
LEE J H S. Initiation of gaseous detonation [J]. Annual Review of Physical Chemistry, 1977, 28: 75–104. DOI: 10.1146/annurev.pc.28.100177.000451.
|
[44] |
LEE J H S. Dynamic parameters of gaseous detonations [J]. Annual Review of Fluid Mechanics, 1984, 16: 311–336. DOI: 10.1146/annurev.fl.16.010184.001523.
|
[45] |
LAFITTE P. Sur la propagation de l'onde explosive [J]. Comptes Rendus de l'Académie des Sciences, 1923, 177: 178–180.
|
[46] |
ZHANG B, NG H D, LEE J H S. Measurement of effective blast energy for direct initiation of spherical gaseous detonations from high-voltage spark discharge [J]. Shock Waves, 2012,22: 1–7.
|
[47] |
ZELDOVICH Y B, KOGARKO S M, SIMONOV N N. An experimental investigation of spherical detonation of gases [J]. Soviet Physics–Technical Physics, 1956, 1(8): 1689–1713.
|
[48] |
BULL D C, ELSWORTH J E, QUINN C P, et al. A study of spherical detonation in mixtures of methane and oxygen diluted by nitrogen [J]. Journal of Physics D: Applied Physics, 1976, 9(14): 1991–2000. DOI: 10.1088/0022-3727/9/14/009.
|
[49] |
BULL D C, ELSWORTH J E, HOOPER G. Concentration limits to unconfined detonation of ethane-air [J]. Combustion and Flame, 1979, 35: 27–40. DOI: 10.1016/0010-2180(79)90004-X.
|
[50] |
ALEKSEEV V I, DOROFEEV S B, SIDOROV V P. Direct initiation of detonations in unconfined gasoline sprays [J]. Shock Waves, 1996, 6(2): 67–71. DOI: 10.1007/BF02515189.
|
[51] |
KNYSTAUTAS R, LEE J H. On the effective energy for direct initiation of gaseous detonations [J]. Combustion and Flame, 1976, 27: 221–228. DOI: 10.1016/0010-2180(76)90025-0.
|
[52] |
LEE J H, MATSUI H. A comparison of the critical energies for direct initiation of spherical detonations in acetylene-oxygen mixtures [J]. Combustion and Flame, 1977, 28: 61–66. DOI: 10.1016/0010-2180(77)90008-6.
|
[53] |
ZHANG B, LIU H, WANG C. Detonation propagation limits in highly argon diluted acetylene-oxygen mixtures in channels [J]. Experimental Thermal and Fluid Science, 2018, 90: 125–131.
|
[54] |
MATSUI H, LEE J H. Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations [J]. Combustion and Flame, 1976, 27: 217–220. DOI: 10.1016/0010-2180(76)90024-9.
|
[55] |
MATSUI H, LEE J H. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures [J]. Symposium (International) on Combustion, 1979, 17(1): 1269–1280. DOI: 10.1016/S0082-0784(79)80120-4.
|
[56] |
BERETS D J, GREENE E F, KISTIAKOWSKY G B. Gaseous detonations. I. stationary waves in hydrogen-oxygen mixtures [J]. Journal of the American Chemical Society, 1950, 72(3): 1080–1086. DOI: 10.1021/ja01159a008.
|
[57] |
MOORADIAN A J, GORDON W E. Gaseous detonation. I. Initiation of detonation [J]. Journal of Chemical Physics, 1951, 19(9): 1166–1172. DOI: 10.1063/1.1748497.
|
[58] |
NORRISH R G W. The study of combustion by photochemical methods [J]. Symposium (International) on Combustion, 1965,10(1): 1−18.
|
[59] |
NORRISH R G W, PORTER G, THRUSH B A. Studies of the explosive combustion of hydrocarbons by kinetic spectroscopy—Ⅱ. comparative investigations of hydrocarbons and a study of the continuous absorption spectra [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 227(1171): 423–433. DOI: 10.1098/rspa.1955.0021.
|
[60] |
THRUSH B A. The homogeneity of explosions initiated by flash photolysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 233(1192): 147–151. DOI: 10.1098/rspa.1955.0251.
|
[61] |
KLIMKIN V F, SOLOUKHIN R I, WOLANSKY P. Initial stages of a spherical detonation directly initiated by a laser spark [J]. Combustion and Flame, 1973, 21(1): 111–117. DOI: 10.1016/0010-2180(73)90012-6.
|
[62] |
KATAOKA H, KATO H, ISHII K. Direct initiation of acetylene-oxygen mixture using laser ablation [C] // Proceedings of the 22nd International Colloqium on the Dynamics of Explosions and Reactive Systems. Belarus, 2009.
|
[63] |
LEE J H, KNYSTAUTAS R, YOSHIKAWA N. Photochemical initiation of gaseous detonations [J]. Acta Astronautica, 1978, 5(11–12): 971–982. DOI: 10.1016/0094-5765(78)90003-6.
|
[64] |
解立峰, 郭学永, 果宏, 等. 燃料-空气云雾爆轰的直接引爆实验研究 [J]. 爆炸与冲击, 2003, 23(1): 78–80. DOI: 10.3321/j.issn:1001-1455.2003.01.015.
XIE L F, GUO X Y, GUO H. Experimental study on the direct initiation of detonation in fuel-air sprays [J]. Explosion and Shock Waves, 2003, 23(1): 78–80. DOI: 10.3321/j.issn:1001-1455.2003.01.015.
|
[65] |
姚干兵, 解立峰, 刘家骢. 碳氢燃料云雾直接起爆感度的实验研究 [J]. 弹道学报, 2006, 18(3): 9–13. DOI: 10.3969/j.issn.1004-499X.2006.03.003.
YAO G B, XIE L F, LIU J C. Experimental study on the direction initiation sensitivity of hydrocarbon-air cloud [J]. Journal of Ballistics, 2006, 18(3): 9–13. DOI: 10.3969/j.issn.1004-499X.2006.03.003.
|
[66] |
ZHANG B, KAMENSKIHS V, NG H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2265–2271. DOI: 10.1016/j.proci.2010.06.165.
|
[67] |
ZHANG B, NG H D, MÉVEL R, et al. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures [J]. International Journal of Hydrogen Energy, 2011, 36(9): 5707–5716. DOI: 10.1016/j.ijhydene.2011.01.175.
|
[68] |
KAMENSKIHS V, NG H D, LEE J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures [J]. Combustion and Flame, 2010, 157(9): 1795–1799. DOI: 10.1016/j.combustflame.2010.02.014.
|
[69] |
宋述忠, 彭金华, 陈网桦, 等. 几种燃料云雾爆轰临界起爆能的研究 [J]. 爆炸与冲击, 2002, 22(4): 373–376. DOI: 10.3321/j.issn:1001-1455.2002.04.016.
SONG S Z, PENG J H, CHEN W H, et al. Study on critical initiation energy of several fuel-air mixture [J]. Explosion and Shock Waves, 2002, 22(4): 373–376. DOI: 10.3321/j.issn:1001-1455.2002.04.016.
|
[70] |
LEE J H S, HIGGINS A J. Comments on criteria for direct initiation of detonation [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 357(1764): 3503–3521. DOI: 10.1098/rsta.1999.0506.
|
[71] |
KUNDU S, ZANGANEH J, MOGHTADERI B. A review on understanding explosions from methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507–523. DOI: 10.1016/j.jlp.2016.02.004.
|
[72] |
KESSLER D A, GAMEZO V N, ORAN E S. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems [J]. Combustion and Flame, 2010, 157(11): 2063–2077. DOI: 10.1016/j.combustflame.2010.04.011.
|
[73] |
ZELDOVICH Y B. Regime classification of an exothermic reaction with nonuniform initial conditions [J]. Combustion and Flame, 1980, 39(2): 211–214. DOI: 10.1016/0010-2180(80)90017-6.
|
[74] |
ZEL’DOVICH Y B, LIBROVICH V B, MAKHVILADZE G M, et al. On the development of detonation in a non-uniformly preheated gas [J]. Astronautica Acta, 1970, 15(5): 313–321.
|
[75] |
LIBERMAN M A, KIVERIN A D, IVANOV M F. On detonation initiation by a temperature gradient for a detailed chemical reaction models [J]. Physics Letters A, 2011, 375(17): 1803–1808. DOI: 10.1016/j.physleta.2011.03.026.
|
[76] |
LIBERMAN M A, KIVERIN A D, IVANOV M F. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models [J]. Physical Review E, 2012, 85(5): 056312. DOI: 10.1103/PhysRevE.85.056312.
|
[77] |
GU X J, EMERSON D R, BRADLEY D. Modes of reaction front propagation from hot spots [J]. Combustion and Flame, 2003, 133(1–2): 63–74. DOI: 10.1016/S0010-2180(02)00541-2.
|
[78] |
KUZNETSOV M, LIBERMAN M, MATSUKOV I. Experimental study of the preheat zone formation and deflagration to detonation transition [J]. Combustion Science and Technology, 2010, 182(11–12): 1628–1644. DOI: 10.1080/00102202.2010.497327.
|
[79] |
IVANOV M F, KIVERIN A D, LIBERMAN M A. Flame acceleration and DDT of hydrogen-oxygen gaseous mixtures in channels with no-slip walls [J]. International Journal of Hydrogen Energy, 2011, 36(13): 7714–7727. DOI: 10.1016/j.ijhydene.2011.03.134.
|
[80] |
IVANOV M F, KIVERIN A D, LIBERMAN M A. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model [J]. Physical Review E, 2011, 83(5): 056313. DOI: 10.1103/PhysRevE.83.056313.
|
[81] |
IVANOV M F, KIVERIN A D, YAKOVENKO I S, et al. Hydrogen-oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls [J]. International Journal of Hydrogen Energy, 2013, 38(36): 16427–16440. DOI: 10.1016/j.ijhydene.2013.08.124.
|
[82] |
SEPULVEDA J, ROUSSO A, HA H, et al. Kinetic enhancement of microchannel detonation transition by ozone addition to acetylene mixtures [J]. AIAA Journal, 2019, 57(2): 476–481. DOI: 10.2514/1.J057773.
|
[83] |
WESTBROOK C K, DRYER F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames [J]. Combustion Science and Technology, 1981, 27(1–2): 31–43. DOI: 10.1080/00102208108946970.
|
[84] |
FRANZELLI B, RIBER E, SANJOSÉ M, et al. A two-step chemical scheme for kerosene-air premixed flames [J]. Combustion and Flame, 2010, 157(7): 1364–1373. DOI: 10.1016/j.combustflame.2010.03.014.
|
[85] |
JONES W P, LINDSTEDT R P. Global reaction schemes for hydrocarbon combustion [J]. Combustion and Flame, 1988, 73(3): 233–249. DOI: 10.1016/0010-2180(88)90021-1.
|
[86] |
ZAMBON A C, CHELLIAH H K. Explicit reduced reaction models for ignition, flame propagation, and extinction of C2H4/CH4/H2 and air systems [J]. Combustion and Flame, 2007, 150(1): 71–91. DOI: 10.1016/j.combustflame.2007.03.003.
|
[87] |
KAZAKOV A, FRENKLACH M. Reduced reaction sets based on GRI-Mech 1.2: 19-species reaction set [EB/OL]. University of California, USA: Berkeley, 1994. http://combustion.berkeley.edu/drm/.
|
[88] |
SMOOKE M D. Reduced kinetic mechanisms and asymptotic approximations for methane-air flames [M]. Berlin: Springer, 1991.
|
[89] |
GOSWAMI M, DERKS S C R, COUMANS K, et al. The effect of elevated pressures on the laminar burning velocity of methane + air mixtures [J]. Combustion and Flame, 2013, 160(9): 1627–1635. DOI: 10.1016/j.combustflame.2013.03.032.
|
[90] |
GOSWAMI M, COUMANS K, BASTIAANS R J M, et al. Numerical simulations of flat laminar premixed methane-air flames at elevated pressure [J]. Combustion Science and Technology, 2014, 186(10): 1447–1459. DOI: 10.1080/00102202.2014.934619.
|
[91] |
HU E J, LI X T, MENG X, et al. Laminar flame speeds and ignition delay times of methane-air mixtures at elevated temperatures and pressures [J]. Fuel, 2015, 158: 1–10. DOI: 10.1016/j.fuel.2015.05.010.
|
[92] |
FRENKLACH M, MORIARTY N W, EITENEER B, et al. Gri-Mech 3.0 [EB/OL]. 1995. http://combustion.berkeley.edu/gri-mech/version30/text30.html.
|
[93] |
ZENG W, MA H A, LIANG Y T, et al. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture [J]. Journal of Advanced Research, 2015, 6(2): 189–201. DOI: 10.1016/j.jare.2014.01.003.
|
[94] |
ROZENCHAN G, ZHU D L, LAW C K, et al. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1461–1470. DOI: 10.1016/S1540-7489(02)80179-1.
|
[95] |
GU X J, HAQ M Z, LAWES M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures [J]. Combustion and Flame, 2000, 121(1): 41–58. DOI: 10.1016/S0010-2180(99)00142-X.
|
[96] |
KOBAYASHI H, NAKASHIMA T, TAMURA T, et al. Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa [J]. Combustion and Flame, 1997, 108(1): 111–117. DOI: 10.1016/S0010-2180(96)00103-4.
|
[97] |
HASSAN M I, AUNG K T, FAETH G M. Measured and predicted properties of laminar premixed methane/air flames at various pressures [J]. Combustion and Flame, 1998, 115(4): 539–550. DOI: 10.1016/S0010-2180(98)00025-X.
|
[98] |
PARK O, VELOO P S, LIU N, et al. Combustion characteristics of alternative gaseous fuels [J]. Proceedings of the Combustion Institute, 2011, 33(1): 887–894. DOI: 10.1016/j.proci.2010.06.116.
|
[99] |
EGOLFOPOULOS F N, LAW C K. Chain mechanisms in the overall reaction orders in laminar flame propagation [J]. Combustion and Flame, 1990, 80(1): 7–16. DOI: 10.1016/0010-2180(90)90049-W.
|
[100] |
EGOLFOPOULOS F N, CHO P, LAW C K. Laminar flame speeds of methane-air mixtures under reduced and elevated pressures [J]. Combustion and Flame, 1989, 76(3): 375–391. DOI: 10.1016/0010-2180(89)90119-3.
|
[101] |
NG H D, HIGGINS A J, KIYANDA C B, et al. Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations [J]. Combustion Theory and Modelling, 2005, 9(1): 159–170. DOI: 10.1080/13647830500098357.
|
[102] |
WATT S D, SHARPE G J. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves [J]. Journal of Fluid Mechanics, 2005, 522: 329–356. DOI: 10.1017/S0022112004001946.
|
[103] |
ECKETT C A, QUIRK J J, SHEPHERD J E. The role of unsteadiness in direct initiation of gaseous detonations [J]. Journal of Fluid Mechanics, 2000, 421: 147–183. DOI: 10.1017/S0022112000001555.
|
[104] |
SHORT M, STEWART D S. Cellular detonation stability. Part 1. a normal-mode linear analysis [J]. Journal of Fluid Mechanics, 1998, 368: 229–262. DOI: 10.1017/S0022112098001682.
|
[105] |
SHORT M. A nonlinear evolution equation for pulsating Chapman−Jouguet detonations with chain-branching kinetics [J]. Journal of Fluid Mechanics, 2001, 430: 381–400. DOI: 10.1017/S0022112000003116.
|
[106] |
PINTGEN F, ECKETT C A, AUSTIN J M, et al. Direct observations of reaction zone structure in propagating detonations [J]. Combustion and Flame, 2003, 133(3): 211–229. DOI: 10.1016/S0010-2180(02)00458-3.
|
[107] |
EDWARDS D H, JONES A T. The variation in strength of transverse shocks in detonation waves [J]. Journal of Physics D: Applied Physics, 1978, 11(2): 155–166. DOI: 10.1088/0022-3727/11/2/013.
|
[108] |
DORMAL M, LIBOUTON J C, VAN TIGGELEN P J. Etude expérimentale des paramètres à l’intérieur d’une maille de detonation [J]. Explosifs, 1983, 36: 76–94.
|
[109] |
SHARPE G J. Transverse waves in numerical simulations of cellular detonations [J]. Journal of Fluid Mechanics, 2001, 447: 31–51. DOI: 10.1017/S0022112001005535.
|
[110] |
TAKAI R, YONEDA K, HIKITA T. Study of detonation wave structure [J]. Symposium (International) on Combustion, 1975, 15(1): 69–78. DOI: 10.1016/S0082-0784(75)80285-2.
|
[111] |
RADULESCU M I, LEE J H S. The failure mechanism of gaseous detonations: experiments in porous wall tubes [J]. Combustion and Flame, 2002, 131(1): 29–46. DOI: 10.1016/S0010-2180(02)00390-5.
|
[112] |
SUBBOTIN V A. Two kinds of transverse wave structures in multifront detonation [J]. Combustion, Explosion and Shock Waves, 1975, 11(1): 83–88. DOI: 10.1007/BF00742862.
|
[113] |
STREHLOW R A. Gas pase detonations: recent developments [J]. Combustion and Flame, 1968, 12(2): 81–101. DOI: 10.1016/0010-2180(68)90083-7.
|
[114] |
HAN W H, KONG W J, LAW C K. Propagation and failure mechanism of cylindrical detonation in free space [J]. Combustion and Flame, 2018, 192: 295–313. DOI: 10.1016/j.combustflame.2018.01.049.
|
[115] |
SÁNCHEZ A L, WILLIAMS F A. Recent advances in understanding of flammability characteristics of hydrogen [J]. Progress in Energy and Combustion Science, 2014, 41: 1–55. DOI: 10.1016/j.pecs.2013.10.002.
|
[116] |
MAZAHERI K, MAHMOUD Y, SABZPOOSHANI M, et al. Experimental and numerical investigation of propagation mechanism of gaseous detonations in channels with porous walls [J]. Combustion and Flame, 2015, 162(6): 2638–2659. DOI: 10.1016/j.combustflame.2015.03.015.
|
[117] |
RADULESCU M I, SHARPE G J, LAW C K, et al. The hydrodynamic structure of unstable cellular detonations [J]. Journal of Fluid Mechanics, 2007, 580: 31–81. DOI: 10.1017/S0022112007005046.
|
[118] |
RADULESCU M I, SHARPE G J, LEE J H S, et al. The ignition mechanism in irregular structure gaseous detonations [J]. Proceedings of the Combustion Institute, 2005, 30(2): 1859–1867. DOI: 10.1016/j.proci.2004.08.047.
|
[119] |
MAXWELL B M, BHATTACHARJEE R R, LAU-CHAPDELAINE S S M, et al. Influence of turbulent fluctuations on detonation propagation [J]. Journal of Fluid Mechanics, 2017, 818: 646–696. DOI: 10.1017/jfm.2017.145.
|
[120] |
FARIA L M, KASIMOV A R. Qualitative modeling of the dynamics of detonations with losses [J]. Proceedings of the Combustion Institute, 2015, 35(2): 2015–2023. DOI: 10.1016/j.proci.2014.07.006.
|
[121] |
WATT S D, SHARPE G J. One-dimensional linear stability of curved detonations [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460(2049): 2551–2568. DOI: 10.1098/rspa.2004.1290.
|
[122] |
SOW A, CHINNAYYA A, HADJADJ A. Mean structure of one-dimensional unstable detonations with friction [J]. Journal of Fluid Mechanics, 2014, 743: 503–533. DOI: 10.1017/jfm.2014.49.
|
[123] |
CLAVIN P, WILLIAMS F A. Dynamics of planar gaseous detonations near Chapman-Jouguet conditions for small heat release [J]. Combustion Theory and Modelling, 2002, 6(1): 127–139. DOI: 10.1088/1364-7830/6/1/307.
|
[124] |
HE L T, LEE J H S. The dynamical limit of one-dimensional detonations [J]. Physics of Fluids, 1995, 7(5): 1151–1158. DOI: 10.1063/1.868556.
|
[125] |
SHORT M, KAPILA A K, QUIRK J J. The chemical-gas dynamic mechanisms of pulsating detonation wave instability [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 357(1764): 3621–3637. DOI: 10.1098/rsta.1999.0513.
|
[126] |
SHARPE G J, FALLE S A E G. One-dimensional numerical simulations of idealized detonations [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455(1983): 1203–1214. DOI: 10.1098/rspa.1999.0355.
|
[127] |
MEYER J W, URTIEW P A, OPPENHEIM A K. On the inadequacy of gasdynamic processes for triggering the transition to detonation [J]. Combustion and Flame, 1970, 14(1): 13–20. DOI: 10.1016/S0010-2180(70)80005-0.
|
[128] |
CLAVIN P. Nonlinear dynamics of shock and detonation waves in gases [J]. Combustion Science and Technology, 2017, 189(5): 747–775. DOI: 10.1080/00102202.2016.1260562.
|
[129] |
WHITE D R, CARY K H. Structure of gaseous detonation. Ⅱ. generation of laminar detonation [J]. The Physics of Fluids, 1963, 6(5): 749–750. DOI: 10.1063/1.1706806.
|
[130] |
STREHLOW R A. Multi-dimensional detonation wave structure [J]. Astronautica Acta, 1970, 15: 345–357.
|
[131] |
CAMPBELL C, WOODHEAD D W. CCCCI—The ignition of gases by an explosion-wave. Part Ⅰ. carbon monoxide and hydrogen mixtures [J]. Journal of the Chemical Society, 1926, 129: 3010–3021. DOI: 10.1039/JR9262903010.
|
[132] |
LEE J H S, SOLOUKHIN R I, OPPENHEIM A K. Current views on gaseous detonation [J]. Astronautica Acta, 1969, 14: 565–584.
|
[133] |
SCHOTT G L. Observations of the structure of spinning detonation [J]. The Physics of Fluids, 1965, 8(5): 850–865. DOI: 10.1063/1.1761328.
|
[134] |
HANANA M, LEFEBVRE M H. Pressure profiles in detonation cells with rectangular and diagonal structures [J]. Shock Waves, 2001, 11(2): 77–88. DOI: 10.1007/PL00004068.
|
[135] |
TSUBOI N, ASAHARA M, ETO K, et al. Numerical simulation of spinning detonation in square tube [J]. Shock Waves, 2008, 18(4): 329–344. DOI: 10.1007/s00193-008-0153-y.
|
[136] |
TSUBOI N, HAYASHI A K. Numerical study on spinning detonations [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2389–2396. DOI: 10.1016/j.proci.2006.07.262.
|
[137] |
TSUBOI N, KATOH S, HAYASHI A K. Three-dimensional numerical simulation for hydrogen/air detonation: rectangular and diagonal structures [J]. Proceedings of the Combustion Institute, 2002, 29(2): 2783–2788. DOI: 10.1016/S1540-7489(02)80339-X.
|
[138] |
WILLIAMS D N, BAUWENS L, ORAN E S. Detailed structure and propagation of three-dimensional detonations [J]. Symposium (International) on Combustion, 1996, 26(2): 2991–2998. DOI: 10.1016/S0082-0784(96)80142-1.
|
[139] |
DELEDICQUE V, PAPALEXANDRIS M V. Computational study of three-dimensional gaseous detonation structures [J]. Combustion and Flame, 2006, 144(4): 821–837. DOI: 10.1016/j.combustflame.2005.09.009.
|
[140] |
TEODORCZYK A, LEE J H S, KNYSTAUTAS R. Photographic study of the structure and propagation mechanisms of quasidetonations in rough tubes [M] // LEYER J C, BORISOV A A, KUHL A L, et al. Dynamics of Detonations and Explosions: Detonations. Washington: American Institute of Aeronautics and Astronautics, 1991: 233−240.
|
[141] |
TEODORCZYK A. Fast deflagrations and detonations in obstacle-filled channels [J]. Journal of Power Technologies, 1995, 79: 145–178.
|
[142] |
TEODORCZYK A, DROBNIAK P, DABKOWSK A. Fast turbulent deflagration and DDT of hydrogen-air mixtures in small obstructed channel [J]. International Journal of Hydrogen Energy, 2009, 34(14): 5887–5893. DOI: 10.1016/j.ijhydene.2008.11.120.
|
[143] |
FAY J A. A mechanical theory of spinning detonation [J]. The Journal of Chemical Physics, 1952, 20(6): 942–950. DOI: 10.1063/1.1700655.
|
[144] |
LEE J H, KNYSTAUTAS R, CHAN C K. Turbulent flame propagation in obstacle-filled tubes [J]. Symposium (International) on Combustion, 1985, 20(1): 1663–1672. DOI: 10.1016/S0082-0784(85)80662-7.
|
[145] |
DOROFEEV S B, KUZNETSOV M S, ALEKSEEV V I, et al. Evaluation of limits for effective flame acceleration in hydrogen mixtures [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 583–589. DOI: 10.1016/S0950-4230(01)00050-X.
|
[146] |
WOLANSKI P, LIU J C, KAUFFMAN C W, et al. On the mechanism of influence of obstacles on the flame propagation [J]. Archivum Combustionis, 1988, 8: 15.
|
[147] |
RADULESCU M I. The propagation and failure mechanism of gaseous detonations: experiments in porous-walled tubes [D]. Montreal: McGill University, 2003.
|
[148] |
NG H D, JU Y G, LEE J H S. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis [J]. International Journal of Hydrogen Energy, 2007, 32(1): 93–99. DOI: 10.1016/j.ijhydene.2006.03.012.
|
[149] |
ZHANG B, LIU H, LI Y C. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures [J]. Fuel, 2019, 253: 305–310. DOI: 10.1016/j.fuel.2019.05.006.
|
[150] |
AUSTIN J M. The role of instability in gaseous detonation [D]. Pasadena: California Institute of Technology, 2003.
|
[151] |
PINTGEN F, AUSTIN J M, SHEPHERD J E. Detonation front structure: variety and characterization [C] // Confined Detonations and Pulse Detonation Engines. Moscow: Torus-Press, 2003: 105−116.
|
[152] |
ZHANG B, LIU H, YAN B J, et al. Experimental study of detonation limits in methane-oxygen mixtures: determining tube scale and initial pressure effects [J]. Fuel, 2020, 259: 116220. DOI: 10.1016/j.fuel.2019.116220.
|
[153] |
GAO Y, ZHANG B, NG H D, et al. An experimental investigation of detonation limits in hydrogen-oxygen-argon mixtures [J]. International Journal of Hydrogen Energy, 2016, 41(14): 6076–6083. DOI: 10.1016/j.ijhydene.2016.02.130.
|
[154] |
FAY J A. Two-dimensional gaseous detonations: velocity deficit [J]. The Physics of Fluids, 1959, 2(3): 283–289. DOI: 10.1063/1.1705924.
|
[155] |
KOMATSU M, TAKAYAMA K, OHTANI K, et al. Effect of debris fragments on direct initiation of spherical detonation waves in stoichiometric oxygen/hydrogen mixtures [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2437–2443. DOI: 10.1016/j.proci.2006.08.111.
|
[156] |
ZHANG B, SHEN X B, PANG L, et al. Methane-oxygen detonation characteristics near their propagation limits in ducts [J]. Fuel, 2016, 177: 1–7. DOI: 10.1016/j.fuel.2016.02.089.
|
[157] |
张超, 唐豪, 李明, 等. 当量比和间隙尺寸对爆震波传播过程的影响 [J]. 航空动力学报, 2012, 27(9): 1948–1957. DOI: 10.13224/j.cnki.jasp.2012.09.013.
ZHANG C, TANG H, LI M, et al. Effects of equivalence ratio and gap size on the propagation behavior of detonations [J]. Journal of Aeerospace Power, 2012, 27(9): 1948–1957. DOI: 10.13224/j.cnki.jasp.2012.09.013.
|
[158] |
WU M H, BURKE M P, SON S F, et al. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2429–2436. DOI: 10.1016/j.proci.2006.08.098.
|
[159] |
WU M H, KUO W C. Accelerative expansion and DDT of stoichiometric ethylene/oxygen flame rings in micro-gaps [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2017–2024. DOI: 10.1016/j.proci.2012.07.008.
|
[160] |
WU M H, WANG C Y. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2287–2293. DOI: 10.1016/j.proci.2010.07.081.
|
[161] |
CAMARGO A, NG H D, CHAO J, et al. Propagation of near-limit gaseous detonations in small diameter tubes [J]. Shock Waves, 2010, 20(6): 499–508. DOI: 10.1007/s00193-010-0253-3.
|
[162] |
HUANG Y, JI H, LIEN F, et al. Numerical study of three-dimensional detonation structure transformations in a narrow square tube: from rectangular and diagonal modes into spinning modes [J]. Shock Waves, 2014, 24(4): 375–392. DOI: 10.1007/s00193-014-0499-2.
|
[163] |
WU Y W, LEE J H S. Stability of spinning detonation waves [J]. Combustion and Flame, 2015, 162(6): 2660–2669. DOI: 10.1016/j.combustflame.2015.03.021.
|
[164] |
GAO Y, NG H D, LEE J H S. Experimental characterization of galloping detonations in unstable mixtures [J]. Combustion and Flame, 2015, 162(6): 2405–2413. DOI: 10.1016/j.combustflame.2015.02.007.
|
[165] |
WANG C, ZHAO Y Y, ZHANG B. Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 120–126. DOI: 10.1016/j.jlp.2016.05.008.
|
[166] |
喻健良, 高远, 闫兴清, 等. 高浓度氩气稀释气体爆轰波临界管径和临界间距关系 [J]. 爆炸与冲击, 2015, 35(4): 603–608. DOI: 10.11883/1001-1455(2015)04-0603-06.
YU J L, GAO Y, YAN X Q, et al. Correation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures [J]. Explosion and Shock Waves, 2015, 35(4): 603–608. DOI: 10.11883/1001-1455(2015)04-0603-06.
|
[167] |
喻健良, 高远, 闫兴清, 等. 初始压力对爆轰波在管道内传播的影响 [J]. 大连理工大学学报, 2014, 54(4): 413–417. DOI: 10.7511/dllgxb201404007.
YU J L, GAO Y, YAN X Q, et al. Effect of initial ressure on propagation of detonation wave in round tube [J]. Journal of Dalian University of Technology, 2014, 54(4): 413–417. DOI: 10.7511/dllgxb201404007.
|
[168] |
夏昌敬, 周凯元. 气相爆轰波在90°矩形弯管中传播时胞格结构的演化 [J]. 爆炸与冲击, 2005, 25(2): 151–156. DOI: 10.11883/1001-1455(2005)02-0151-06.
XIA C J, ZHOU K Y. Cellular structure evolution of gaseous detonation in a 90° rectangular bend [J]. Explosion and Shock Waves, 2005, 25(2): 151–156. DOI: 10.11883/1001-1455(2005)02-0151-06.
|
[169] |
夏昌敬, 周凯元, 沈兆武. 初始条件影响气体非稳定爆轰波在弯管中传播特性的实验研究 [J]. 中国科学技术大学学报, 2004, 34(1): 92−97. DOI: 10.3969/j.issn.0253-2778.2004.01.014.
XIA C J, ZHOU K Y, SHEN Z W. Experimental study on effects of initial conditions for propagation characteristics of unsteady gaseous detonation in channels with a bend [J]. Journal of University of Science and Technology of China, 2004, 34(1): 92−97. DOI: 10.3969/j.issn.0253-2778.2004.01.014.
|
[170] |
YOSHIDA K, HAYASHI K, MORII Y, et al. Study on behavior of methane/oxygen gas detonation near propagation limit in small diameter tube: effect of tube diameter [J]. Combustion Science and Technology, 2016, 188(11): 2012–2025. DOI: 10.1080/00102202.2016.1213989.
|
[171] |
ZHANG B, LIU H. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture [J]. Combustion and Flame, 2017, 182: 279–287. DOI: 10.1016/j.combustflame.2017.04.025.
|
[172] |
ZHANG B, PANG L, GAO Y. Detonation limits in binary fuel blends of methane/hydrogen mixtures [J]. Fuel, 2016, 168: 27–33. DOI: 10.1016/j.fuel.2015.11.073.
|
[173] |
LEE J H S, JESUTHASAN A, NG H D. Near limit behavior of the detonation velocity [J]. Proceedings of the Combustion Institute, 2013, 34(2): 1957–1963. DOI: 10.1016/j.proci.2012.05.036.
|
[174] |
JACKSON S, LEE B J, SHEPHERD J E. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen [J]. Combustion and Flame, 2016, 167: 24–38. DOI: 10.1016/j.combustflame.2016.02.030.
|
[175] |
ISHII K, MONWAR M. Detonation propagation with velocity deficits in narrow channels [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2359–2366. DOI: 10.1016/j.proci.2010.07.051.
|
[176] |
ISHII K, KATAOKA H, KOJIMA T. Initiation and propagation of detonation waves in combustible high speed flows [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2323–2330. DOI: 10.1016/j.proci.2008.05.029.
|
[177] |
GAO Y, NG H D, LEE J H S. Near-limit propagation of gaseous detonations in narrow annular channels [J]. Shock Waves, 2017, 27(2): 199–207. DOI: 10.1007/s00193-016-0639-y.
|
[178] |
HALOUA F, BROUILLETTE M, LIENHART V, et al. Characteristics of unstable detonations near extinction limits [J]. Combustion and Flame, 2000, 122(4): 422–438. DOI: 10.1016/S0010-2180(00)00134-6.
|
[179] |
颜秉健, 张博, 高远, 等. 气相爆轰波近失效状态的传播模式 [J]. 爆炸与冲击, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
YAN B J, ZHANG B, GAO Y, et al. Investigation of the propagation modes for gaseous detonation at near-limit condition [J]. Explosion and Shock Waves, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
|
[180] |
GOODERUM P B. An experimental study of the turbulent boundary layer on a shock-tube wall: NACA-TN-4243 [R]. Washington: Langley Aeronautical Laboratory, 1958.
|
[181] |
LIU L J, ZHANG Q. Numerical study of cellular structure in detonation of a stoichiometric mixture of vapor JP-10 in air using a quasi-detailed chemical kinetic model [J]. Aerospace Science and Technology, 2019, 91: 669–678. DOI: 10.1016/j.ast.2019.07.017.
|
[182] |
WANG L Q, MA H H, SHEN Z W, et al. Detonation behaviors of syngas-oxygen in round and square tubes [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14775–14786. DOI: 10.1016/j.ijhydene.2018.05.163.
|
[183] |
CRANE J, SHI X, SINGH A V, et al. Isolating the effect of induction length on detonation structure: hydrogen-oxygen detonation promoted by ozone [J]. Combustion and Flame, 2019, 200: 44–52. DOI: 10.1016/j.combustflame.2018.11.008.
|
[184] |
ZHANG B, LIU H. Theoretical prediction model and experimental investigation of detonation limits in combustible gaseous mixtures [J]. Fuel, 2019, 258: 116132. DOI: 10.1016/j.fuel.2019.116132.
|
[185] |
MORLEY C. Gaseq: A Chemical equilibrium program for windows [EB/OL]. 2007. http://www.gaseq.co.uk/.
|
[186] |
BOECK L R, MÉVEL R, FIALA T, et al. High-speed OH-PLIF imaging of deflagration-to-detonation transition in H2-air mixtures [J]. Experiments in Fluids, 2016, 57(6): 105. DOI: 10.1007/s00348-016-2191-z.
|
[187] |
HAN W H, KONG W J, GAO Y, et al. The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations [J]. Journal of Fluid Mechanics, 2017, 813: 458–481. DOI: 10.1017/jfm.2016.873.
|
[188] |
MAHMOUDI Y, MAZAHERI K. Triple point collision and hot spots in detonations with regular structure [J]. Combustion Science and Technology, 2012, 184(7): 1135–1151. DOI: 10.1080/00102202.2012.664004.
|
[189] |
MAHMOUDI Y, MAZAHERI K. High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations [J]. Acta Astronautica, 2015, 115: 40–51. DOI: 10.1016/j.actaastro.2015.05.014.
|
[190] |
EINFELDT B, MUNZ C D, ROE P L, et al. On Godunov-type methods near low densities [J]. Journal of Computational Physics, 1991, 92: 273−295. DOI: 10.1016/0021-9991(91)90211-3.
|
[191] |
LINDE T, ROE P L. Robust Euler codes [C] // Proceedings of the 13th Computational Fluid Dynamics Conference. USA: Snowmass Village, 1997.
|
[192] |
张涵信. 差分计算中激波上、下游出现波动的探讨 [J]. 空气动力学学报, 1984, 1: 12–19.
ZHANG H X. The exploration of the spatial oscillations in finite difference solutions for navier-stokes shocks [J]. Acta Aerodyn Sin, 1984, 1: 12−19.
|
[193] |
张涵信. 无波动、无自由参数的耗散差分格式 [J]. 空气动力学学报, 1988, 6: 143–165.
ZHANG H X. Non-oscillatory dissipation and non-free-parameter difference scheme [J]. Acta Aerodynamica Sinica, 1988, 6: 143–165.
|
[194] |
沈孟育, 李海东, 刘秋生. 用解析离散法构造WENO-FCT格式 [J]. 空气动力学报, 1998, 16: 56−63.
SHEN M Y, LI H D, LIU Q S. Analytic discrete WENO-FCT scheme [J]. Acta Aerodynamica Sinica, 1998, 16: 56–63.
|
[195] |
ZHANG X X, SHU C W. On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes [J]. Journal of Computational Physics, 2010, 229(23): 8918–8934. DOI: 10.1016/j.jcp.2010.08.016.
|
[196] |
ZHANG X X, SHU C W. Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms [J]. Journal of Computational Physics, 2011, 230: 1238−1248. DOI: 10.1016/j.jcp.2010.10.036.
|
[197] |
SHEN Y, SHEN H, LIU K X, et al. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme [J]. Chinese Physics B, 2016, 25(11): 114702. DOI: 10.1088/1674-1056/25/11/114702.
|
[198] |
韦伟, 翁春生. 基于三维两相CE/SE方法的点火位置对固体燃料PDE的影响研究 [J]. 弹道学报, 2016, 28(3): 65–70. DOI: 10.3969/j.issn.1004-499X.2016.03.012.
WEI W, WENG C S. Analysis of the influence of different ignition location on pulse detonation engine with solid fuel based on three-dimensional two-phase CE/SE method [J]. Journal of Ballistics, 2016, 28(3): 65–70. DOI: 10.3969/j.issn.1004-499X.2016.03.012.
|