Volume 42 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
ZHANG Wenchao, WANG Shu, LIANG Zengyou, QIN Bin, LU Haitao, CHEN Xinyuan, LU Wenjie. A study of blast wave protection efficiency of helmet based on air flow field pressure analysis[J]. Explosion And Shock Waves, 2022, 42(11): 113201. doi: 10.11883/bzycj-2021-0411
Citation: ZHANG Wenchao, WANG Shu, LIANG Zengyou, QIN Bin, LU Haitao, CHEN Xinyuan, LU Wenjie. A study of blast wave protection efficiency of helmet based on air flow field pressure analysis[J]. Explosion And Shock Waves, 2022, 42(11): 113201. doi: 10.11883/bzycj-2021-0411

A study of blast wave protection efficiency of helmet based on air flow field pressure analysis

doi: 10.11883/bzycj-2021-0411
  • Received Date: 2021-09-28
  • Rev Recd Date: 2022-03-25
  • Available Online: 2022-03-30
  • Publish Date: 2022-11-18
  • To study the protective effect of a typical combat helmet against traumatic brain injury induced by blast wave, an anti-explosion test was first carried out, in which 50 g TNT was used to produce blast wave acting on a head model with or without helmet protection located at 1m away from explosion position. Pressure sensors were installed on the forehead, cranial, parietal and postcranial of the head model, while the front end of each sensor was in touch with the surface of the head model. Secondly, based on the 3rd Military Medical University’s visualization body slice data set (CVH), a finite element model with the typical head structure was established. The head of the finite element model contained skin, skull, cranial, cerebrospinal fluid, brain tissue, dura mater and pia mater. All the membrane structures are meshed into quadrilateral shell elements, while the remaining parts are all meshed into cubic solid elements. The finite element model of the head is then loaded by the blast wave, and the experimental conditions are simulated by the display dynamic analysis software of LS-DYNA. The validity of the simulation model is verified by the test results. Next, the pressure variation of the blast wave flow field under different working conditions is analyzed by numerical simulation, meanwhile the effect of foam liner on helmet protection capability is studied. The results show that the typical combat helmet can attenuate the frontal air overpressure to 54.5% of that without helmet protection, but it would enhance the air overpressure on the posterior cranial to 2.19 times that without protection, which harms the protection of posterior cranial. The foam padding in helmet suspension can reduce the negative effect of the helmet on cranial posterior protection and improve the protective ability of the helmet against the blast wave. The results also show that the auricle structure amplifies the overpressure of the blast wave to 1.7 times the free field in the same position under the frontal blast wave, which is an important target organ of blast wave action.
  • loading
  • [1]
    宁亚蕾, 周元国. 原发性颅脑冲击伤致伤机制及病理学特点 [J]. 中华创伤杂志, 2014, 30(3): 280–283. DOI: 10.3760/cma.j.issn.1001-8050.2014.03.024.
    [2]
    李创忠, 王运杰. 爆炸冲击波性脑损伤的研究进展 [J]. 临床军医杂志, 2010, 38(2): 311–315. DOI: 10.3969/j.issn.1671-3826.2010.02.061.
    [3]
    BHATTACHARJEE Y. Shell shock revisited: solving the puzzle of blast trauma [J]. Science, 2008, 319(5862): 406–408. DOI: 10.1126/science.319.5862.406.
    [4]
    李振鲁. 防暴头盔防护性能的研究现状 [J]. 黑龙江科技信息, 2013(23): 150–151. DOI: 10.3969/j.issn.1673-1328.2013.23.160.
    [5]
    ZHANG L Y, MAKWANA R, SHARMA S. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet [J]. Frontiers in Neurology, 2013, 4: 88. DOI: 10.3389/fneur.2013.00088.
    [6]
    NYEIN M K, JASON A M, YU L, et al. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(48): 20703–20708. DOI: 10.1073/pnas.1014786107.
    [7]
    SARVGHAD-MOGHADDAM H, REZAEI A, ZIEJEWSKI M, et al. CFD modeling of the underwash effect of military helmets as a possible mechanism for blast-induced traumatic brain injury [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(1): 16–26. DOI: 10.1080/10255842.2016.1193597.
    [8]
    TAN L B, CHEW F S, TSE K M, et al. Impact of complex blast waves on the human head: a computational study [J]. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(12): 1476–1505. DOI: 10.1002/cnm.2668.
    [9]
    LI J T, MA T, HUANG C, et al. Protective mechanism of helmet under far-field shock wave [J]. International Journal of Impact Engineering, 2020, 143: 103617. DOI: 10.1016/j.ijimpeng.2020.103617.
    [10]
    康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究 [J]. 爆炸与冲击, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.

    KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
    [11]
    中国人民解放军陆军军医大学. 中国数字化可视人体数据库[DB/OL]. [2021-9-28]. http://cvh.bmicc.cn/cvh/cn/index.php.
    [12]
    徐斌, 王成, 臧立伟, 等. 爆炸冲击波与防弹衣相互作用的数值模拟 [J]. 北京理工大学学报, 2019, 39(2): 131–134. DOI: 10.15918/j.tbit1001-0645.2019.02.004.

    XU B, WANG C, ZANG L W, et al. Numerical simulation on the impact of explosion shock wave on bullet-proof vest [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 131–134. DOI: 10.15918/j.tbit1001-0645.2019.02.004.
    [13]
    蔡志华, 包正, 王威, 等. 枪弹冲击防弹头盔致头部非贯穿性损伤的数值模拟研究 [J]. 兵工学报, 2017, 38(6): 1097–1105. DOI: 10.3969/j.issn.1000-1093.2017.06.008.

    CAI Z H, BAO Z, WANG W, et al. Simulation of non-penetrating damage of head due to bullet impact to helmet [J]. Acta Armamentarii, 2017, 38(6): 1097–1105. DOI: 10.3969/j.issn.1000-1093.2017.06.008.
    [14]
    HORGAN T J, GILCHRIST M D. The creation of three-dimensional finite element models for simulating head impact biomechanics [J]. International Journal of Crashworthiness, 2003, 8(4): 353–366. DOI: 10.1533/ijcr.2003.0243.
    [15]
    GRUJICIC M, ARAKERE G, HE T. Material‐modeling and structural‐mechanics aspects of the traumatic brain injury problem [J]. Multidiscipline Modeling in Materials and Structures, 2010, 6(3): 335–363. DOI: 10.1108/15736101011080097.
    [16]
    栗志杰, 由小川, 柳占立, 等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究 [J]. 爆炸与冲击, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.

    LI Z J, YOU X C, LIU Z L, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves [J]. Explosion and Shock, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.
    [17]
    GANPULE S, ALAI A, PLOUGONVEN E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3): 511–531. DOI: 10.1007/s10237-012-0421-8.
    [18]
    CHAFI M S, GANPULE S, GU L X, et al. Dynamic response of brain subjected to blast loadings: influence of frequency ranges [J]. International Journal of Applied Mechanics, 2011, 3(4): 803–823. DOI: 10.1142/S175882511100124X.
    [19]
    MOORE D F, JÉRUSALEM A, NYEIN M, et al. Computational biology-modeling of primary blast effects on the central nervous system [J]. NeuroImage, 2009, 47(2): T10-T20. DOI: 10.1016/j.neuroimage.2009.02.019.
    [20]
    WANG C Z, PAHK J B, BALABAN C D, et al. Biomechanical assessment of the bridging vein rupture of blast-induced traumatic brain injury using the finite element human head model [C]//Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Houston: American Society of Mechanical Engineers, 2012: 795–805. DOI: 10.1115/IMECE2012-88739.
    [21]
    侯俊亮, 蒋建伟, 门建兵, 等. 不同形状装药爆炸冲击波场及对靶板作用效应的数值模拟 [J]. 北京理工大学学报, 2013, 33(6): 556–561. DOI: 10.15918/j.tbit1001-0645.2013.06.002.

    HOU J L, JIANG J W, MEN J B, et al. Numerical simulation on blast wave field and deformation of thin plate under different-shape charge loading [J]. Transactions of Beijing Institute of Technology, 2013, 33(6): 556–561. DOI: 10.15918/j.tbit1001-0645.2013.06.002.
    [22]
    张文超, 王舒, 梁增友, 等. 爆炸冲击波致颅脑冲击伤数值模拟研究 [J]. 北京理工大学学报, 2022. DOI: 10.15918/j.tbit1001-0645.2021.191.

    ZHANG W C, WANG S, LIANG Z Y, et al. Numerical simulation on traumatic brain injury induced by blast waves [J]. Transactions of Beijing Institute of Technology, 2022. DOI: 10.15918/ j.bit1001-0645.2021.191.
    [23]
    WARD C, CHAN M, NAHUM A. Intracranial pressure-a brain injury criterion [C]// 24th Stapp Car Crash Conference, 1980: 3867-3880. DOI: 10.4271/801304.
    [24]
    STÅLHAMMAR D. Experimental brain damage from fluid pressures due to impact acceleration. 1. Design of experimental procedure [J]. Acta Neurologica Scandinavica, 1975, 52(1): 7–26. DOI: 10.1111/j.1600-0404.1975.tb02824.x.
    [25]
    LEE H P, GONG S W. Finite element analysis for the evaluation of protective functions of helmets against ballistic impact [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13(5): 537–550. DOI: 10.1080/10255840903337848.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(5)

    Article Metrics

    Article views (532) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return