Volume 42 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHOU Lang, XU Chunguang. An algorithm for building structural damage under the effect of shock wave[J]. Explosion And Shock Waves, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415
Citation: ZHOU Lang, XU Chunguang. An algorithm for building structural damage under the effect of shock wave[J]. Explosion And Shock Waves, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415

An algorithm for building structural damage under the effect of shock wave

doi: 10.11883/bzycj-2021-0415
  • Received Date: 2021-09-30
  • Rev Recd Date: 2022-01-08
  • Available Online: 2022-09-13
  • Publish Date: 2022-10-31
  • A computational model of simulating the structural damage and the propagation of shock wave was developed in order to study the interaction between blast wave and building. A damage-load criteria of building structures was used to evaluate the destruction of the structure under blast wave, with shock wave impulse used as an indicator of structural failure. Then, the mechanism of the interaction between shock wave and structural fragments was investigated via the simulations of unstructured dynamic grid according to the distribution of pressure field. It has been recognized that there mainly exist three categories of physical effects, i.e., the effect of rarefaction wave caused by the motion of fragments; the impediment effect of structure fragments to shock wave; and the effect of plane wave resulting from the realignment of diffraction wave. Based on the aforementioned analysis, an interface algorithm of fluid-structure coupling was employed to assess the first effect in terms of pressure relief, and “virtual mesh ventilation method” is utilized to deal with the second effect of impediment to shock wave. The results show that the developed model can effectively simulate the propagation of shock wave and reduce the computational cost. Compared to the rigid wall assumptions, the developed model reaches relatively closer agreement with the physical reality. Moreover, the model is simpler and more efficient than the strict coupling method of CSD (computational structural dynamics) / CFD (computational fluid dynamics). Reasonable consistence of the pressure prediction was found between the application of the model and the unstructured dynamic grid simulation. The accuracy, therefore, can meet the engineering requirements. When applied to numerical simulations of the damage process of typical buildings, this model effectively leads to the building damage and shock wave overpressure distributions. The results conform well with the structural damage characteristics, which can provide reference and basis for the damage assessment of explosion shock wave and the building structure.
  • loading
  • [1]
    HENRYCH J, ABRAHAMSON G R. The dynamics of explosion and its use [M]. Amsterdam: Elsevier Scientific Pub. Co. , 1979: 218.
    [2]
    李翼祺, 马素贞. 爆炸力学 [M]. 北京: 科学出版社, 1992: 258–317.
    [3]
    北京工业学院八系. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1978.
    [4]
    BAKER W E. Explosions in air [M]. Austin: University of Texas Press, 1974: 6–10.
    [5]
    刘伟, 郑毅, 秦飞. 近地面TNT爆炸的试验研究和数值模拟 [J]. 爆破, 2012, 29(1): 5–9, 26. DOI: 10.3963/j.issn.1001-487X.2012.01.002.

    LIU W, ZHENG Y, QIN F. Experimental and numerical simulation of TNT explosion on the ground [J]. Blasting, 2012, 29(1): 5–9, 26. DOI: 10.3963/j.issn.1001-487X.2012.01.002.
    [6]
    宁建国, 王仲琦, 赵衡阳, 等. 爆炸冲击波绕流的数值模拟研究 [J]. 北京理工大学学报, 1999, 19(5): 543–547. DOI: 10.3969/j.issn.1001-0645.1999.05.003.

    NING J G, WANG Z Q, ZHAO H Y, et al. Study on the flow of the explosive shock wave around the wall numberical simulation [J]. Journal of Beijing Institute of Technology, 1999, 19(5): 543–547. DOI: 10.3969/j.issn.1001-0645.1999.05.003.
    [7]
    王飞, 朱立新, 顾文彬, 等. 基于ALE算法的空气冲击波绕流数值模拟研究 [J]. 工程爆破, 2002, 8(2): 13–16. DOI: 10.3969/j.issn.1006-7051.2002.02.004.

    WANG F, ZHU L X, GU W B, et al. Numerical simulation of shock wave around-flow on basis of ALE algorithm [J]. Engineering Blasting, 2002, 8(2): 13–16. DOI: 10.3969/j.issn.1006-7051.2002.02.004.
    [8]
    张晓伟, 张浩, 杨茂林, 等. 隔爆墙后爆炸冲击波绕射与超压分布规律 [J]. 北京理工大学学报, 2021, 41(4): 372–379. DOI: 10.15918/j.tbit1001-0645.2020.069.

    ZHANG X W, ZHANG H, YANG M L, et al. Diffraction and overpressure distribution of blast wave behind explosion isolation wall [J]. Transactions of Beijing Institute of Technology, 2021, 41(4): 372–379. DOI: 10.15918/j.tbit1001-0645.2020.069.
    [9]
    孔德森, 孟庆辉, 史明臣, 等. 爆炸冲击波在地铁隧道内的传播规律研究 [J]. 地下空间与工程学报, 2012, 8(1): 48–55,64. DOI: 10.3969/j.issn.1673-0836.2012.01.009.

    KONG D S, MENG Q H, SHI M C, et al. The dissemination rule of blasting shock-wave in subway tunnel [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 48–55,64. DOI: 10.3969/j.issn.1673-0836.2012.01.009.
    [10]
    刘祥, 孙宇新, 钟垂琦. 隧道口部爆炸冲击波传播规律数值仿真分析 [J]. 防护工程, 2020, 42(1): 12–17. DOI: 10.3969/j.issn.1674-1854.2020.01.003.

    LIU X, SUN Y X, ZHONG C Q. Numerical simulation analysis on propagation law of explosion waves at tunnel entrance [J]. Protective Engineering, 2020, 42(1): 12–17. DOI: 10.3969/j.issn.1674-1854.2020.01.003.
    [11]
    舒奕展, 王高辉, 卢文波, 等. 爆炸冲击波在双层地铁站内的传播规律研究 [J]. 地下空间与工程学报, 2020, 16(6): 1859–1865.

    SHU Y Z, WANG G H, LU W B, et al. Study on propagation law of explosive shock wave inside metro station [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1859–1865.
    [12]
    张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.

    ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.
    [13]
    邓荣兵, 金先龙, 陈峻, 等. 爆炸冲击波对玻璃幕墙破坏作用的多物质ALE有限元模拟 [J]. 高压物理学报, 2010, 24(2): 81–87. DOI: 10.11858/gywlxb.2010.02.001.

    DENG R B, JIN X L, CHEN J, et al. Application of ALE multi-material formulation for blast analysis of glass curtain wall [J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 81–87. DOI: 10.11858/gywlxb.2010.02.001.
    [14]
    董湘乾. 框架结构在爆炸冲击作用下的动力响应分析研究 [D]. 长沙: 湖南大学, 2010: 14–23. DOI: 10.7666/d.y1724143.
    [15]
    张秀华, 王钧, 赵金友, 等. 室内燃气爆炸冲击波的特性及传播规律 [J]. 工程力学, 2014, 31(S1): 258–264. DOI: 10.6052/j.issn.1000-4750.2013.04.S050.

    ZHANG X H, WANG J, ZHAO J Y, et al. Blast shock wave characteristics and propagation law of internal gas explosion [J]. Engineering Mechanics, 2014, 31(S1): 258–264. DOI: 10.6052/j.issn.1000-4750.2013.04.S050.
    [16]
    游俊. 爆炸冲击波与破片联合作用下砌体墙数值模拟 [D]. 湘潭: 湘潭大学, 2020: 24–35. DOI: 10.27426/d.cnki.gxtdu.2020.000510.

    YOU J. Numerical simulation of masonry wall under combined action of blast and fragments [D]. Xiangtan: Xiangtan University, 2020: 24–35. DOI: 10.27426/d.cnki.gxtdu.2020.000510.
    [17]
    隋树元, 王树山. 终点效应学 [M]. 北京: 国防工业出版社, 2000: 279–292.

    SUI S Y, WANG S S. Terminal effects [M]. Beijing: National Defense Industry Press, 2000: 279–292.
    [18]
    LÖHNER R, YANG C, BAUM J D, et al. The numerical simulation of strongly unsteady flow with hundreds of moving bodies [J]. International Journal for Numerical Methods in Fluids, 1999, 31(1): 113–120.
    [19]
    BAUM J D, LUO H, MESTREAU E L, et al. A coupled CFD/CSD methodology for modeling weapon detonation and fragmentation [C]//Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1999. DOI: 10.2514/6.1999-794.
    [20]
    BAUM J D, LUO H, MESTREAU E L, et al. Recent developments of a coupled CFD/CSD methodology [C]//Proceedings of the International Conference on Computational Science-Part Ⅰ. San Francisco: Springer, 2001: 1087−1097. DOI: 10.1007/3-540-45545-0_120.
    [21]
    王巍, 刘君, 白晓征, 等. 非结构动网格技术及其在超声速飞行器头罩分离模拟中的应用 [J]. 空气动力学学报, 2008, 26(1): 131–135. DOI: 10.3969/j.issn.0258-1825.2008.01.025.

    WANG W, LIU J, BAI X Z, et al. DUM research and apply to solve the fairing separating form hypersonic vehicle [J]. Acta Aerodynamica Sinica, 2008, 26(1): 131–135. DOI: 10.3969/j.issn.0258-1825.2008.01.025.
    [22]
    王巍, 刘君, 刘冰, 等. 火箭助推器从芯级飞行器动态分离过程的数值模拟 [J]. 宇航学报, 2006, 27(4): 766–770. DOI: 10.3321/j.issn:1000-1328.2006.04.039.

    WANG W, LIU J, LIU B, et al. Numerical simulation the process of the rocket booster separating form spaceship [J]. Journal of Astronautics, 2006, 27(4): 766–770. DOI: 10.3321/j.issn:1000-1328.2006.04.039.
    [23]
    王巍, 刘君, 郭正. 子母弹抛壳过程非定常流动的数值模拟 [J]. 空气动力学学报, 2006, 24(3): 285–288. DOI: 10.3969/j.issn.0258-1825.2006.03.003.

    WANG W, LIU J, GUO Z. Numerical simulation of release the cover form cargo projectile [J]. Acta Aerodynamica Sinica, 2006, 24(3): 285–288. DOI: 10.3969/j.issn.0258-1825.2006.03.003.
    [24]
    刘君, 白晓征, 郭正. 非结构动网格计算方法: 及其在包含运动界面的流场模拟中的应用 [M]. 长沙: 国防科技大学出版社, 2009.
    [25]
    饶国宁. 爆炸能量输出特性及爆炸波与目标作用的研究[D]. 南京: 南京理工大学, 2007: 21−26.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (263) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return