Volume 42 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHANG Jian, XU Yuxin, LIU Tielei, ZHANG Peng. Oblique penetration effect of a tungsten ball on high hardness steel[J]. Explosion And Shock Waves, 2022, 42(2): 023302. doi: 10.11883/bzycj-2021-0427
Citation: ZHANG Jian, XU Yuxin, LIU Tielei, ZHANG Peng. Oblique penetration effect of a tungsten ball on high hardness steel[J]. Explosion And Shock Waves, 2022, 42(2): 023302. doi: 10.11883/bzycj-2021-0427

Oblique penetration effect of a tungsten ball on high hardness steel

doi: 10.11883/bzycj-2021-0427
  • Received Date: 2021-10-18
  • Rev Recd Date: 2021-11-01
  • Available Online: 2021-12-14
  • Publish Date: 2022-02-05
  • In order to study the penetration performance and failure modes of high-hardness steel plates against tungsten balls with different angles, a ballistic gun was used to carry out $ \varnothing $8 mm, $ \varnothing $11 mm tungsten alloy spherical fragments at 0°, 20°, 40° angles to impact the thickness of 6 mm, 8 mm. In the hardness steel plate test, the limit penetration velocity (v50) of the fragments impacting the steel plate was obtained; the relationships between the axial and radial deformation of the tungsten ball after the impact and the failure mode of the target plate and the impact velocity were analyzed. It is found that the failure mode of the high hardness steel plate is mainly the compression opening. For the pit failure and shear failure along the thickness direction, the shear fracture increases as the angle increases. The experiment was simulated by the method of finite element simulation. The simulation results were compared with the test results. The damage morphology of the target plate and the limit penetration velocity were in good agreement. The validity of the numerical simulation model and parameters was verified, and the numerical simulation method was used. The influence of the impact angle on the energy absorption mode of the target plate was studied, and the existing calculation formula of the limit penetration velocity was revised based on the experimental data. The results show that as the penetration angle increases, the limit penetration velocity increases, and the larger the penetration angle, the faster the limit penetration velocity increases; the revised limit penetration velocity calculation formula has a wider application range and higher accuracy, and has better engineering applications. As the angle increases, the energy absorption mode of the target plate gradually changes from compression opening to shearing plugging, and when the angle exceeds 50°, the energy consumption of shearing plugging will exceed the energy consumption of compression opening.
  • loading
  • [1]
    AWERBUCH J, BODNER S R . Analysis of the mechanics of perforation of projectiles in metallic plates [J]. International Journal of Solids & Structures, 1974, 10(6): 671–684.
    [2]
    陈志斌, 刘志刚. 球形弹垂直碰撞金属靶板的实验研究 [J]. 弹道学报, 1991, 7(1): 66–70.

    CHEN Z B, LIU Z G. Experimental investigation on the mental target by normal impact of spherical shell [J]. Journal of Ballistics, 1991, 7(1): 66–70.
    [3]
    任杰, 徐豫新, 王树山. 超高强度平头圆柱形弹体对低碳合金钢板的高速撞击实验 [J]. 爆炸与冲击, 2017, 37(4): 629–636. DOI: 10.11883/1001-1455(2017)04-0629-08.

    REN J, XU Y X, WANG S S. High-speed impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 629–636. DOI: 10.11883/1001-1455(2017)04-0629-08.
    [4]
    陈材, 石全, 尤志锋, 等. 预制破片侵彻靶板临界跳飞角变化规律 [J]. 火力与指挥控制, 2021, 46(5): 29–34. DOI: 10.3969/j.issn.1002-0640.2021.05.006.

    CHEN C, SHI Q, YOU Z F, et al. Change law of critical ricochet angle of prefabricated fragment penetrating target plate [J]. Fire Control & Command Control, 2021, 46(5): 29–34. DOI: 10.3969/j.issn.1002-0640.2021.05.006.
    [5]
    姚熊亮, 王治, 叶墡君, 等. 球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型 [J]. 爆炸与冲击, 2021, 41(3): 033301. DOI: 10.11883/bzycj-2020-0092.

    YAO X L, WANG Z, YE S J, et al. A simplified theoretical model for attack angle change of a hemispherically-nosed projectile while penetrating the stiffener of a ship plate frame [J]. Explosion and Shock Waves, 2021, 41(3): 033301. DOI: 10.11883/bzycj-2020-0092.
    [6]
    午新民. 钨合金球体对有限厚靶板侵彻的理论与试验研究[D]. 北京: 北京理工大学, 1999.
    [7]
    胡邓平, 赵利平, 伍先明, 等. 616装甲防弹钢动态冲击下的性能研究 [J]. 兵器材料科学与工程, 2017, 40(2): 96–99. DOI: 10.19822/j.cnki.1671-6329.20210032.

    HU D P, ZHAO L P, WU X M, et al. Study on the performance of 616 armored ballistic steel under dynamic impact [J]. Ordnance Material Science and Engineering, 2017, 40(2): 96–99. DOI: 10.19822/j.cnki.1671-6329.20210032.
    [8]
    XU Y X, HAN X G, ZHAO X X, et al. Experimentation research on failure behavior of tungsten alloy penetrating low carbon steel plate at high velocity [J]. Rare Metal Materials and Engineering, 2016, 45(1): 122–126.
    [9]
    赵荣贵, 陈林恒, 左秀荣. 超高强度装甲钢抗弹失效机理研究 [J]. 宽厚板, 2020, 26(5): 11–14. DOI: 10.3969/j.issn.1009-7864.2020.05.003.

    ZHAO R G, CHEN L H, ZUO X R. Research on the ballistic failure mechanism of ultra-high strength armored steel [J]. Wide and Heavy Plate, 2020, 26(5): 11–14. DOI: 10.3969/j.issn.1009-7864.2020.05.003.
    [10]
    程瑶, 赵太勇, 陈智刚, 等. 低中速钨球变形与速度关系计算模型 [J]. 爆破器材, 2019, 48(5): 52–56. DOI: 10.3969/j.issn.1001-8352.2019.05.010.

    CHENG Y, ZHAO T Y, CHEN Z G, et al. Calculation model of the relationship between deformation and velocity of low and medium speed tungsten ball [J]. Explosive Materials, 2019, 48(5): 52–56. DOI: 10.3969/j.issn.1001-8352.2019.05.010.
    [11]
    曹柏桢, 凌玉崑, 蒋浩征, 等. 飞航导弹战斗部与引信[M]. 北京: 中国宇航出版社, 1995: 140-141.
    [12]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain-rates and high temperatures [C]// Proceeding of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983: 541−547.
    [13]
    刘铁, 史洪刚, 程新, 等. 钨合金帽型试样的绝热剪切带数值模拟研究 [J]. 兵器材料科学与工程, 2008(2): 75–79. DOI: 10.3969/j.issn.1004-244X.2008.02.020.

    LIU T, SHI H G, CHENG X, et al. Numerical simulations for adiabatic shear bands of WHA in hat specimen [J]. Ordnance Material Science and Engineering, 2008(2): 75–79. DOI: 10.3969/j.issn.1004-244X.2008.02.020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(9)

    Article Metrics

    Article views (575) PDF downloads(170) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return