Volume 42 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
NIU Huanhuan, YAN Xiaopeng, LUO Haoshun, CHEN Jiajun, LI Zhiqiang. Mechanical response of sapphire transparent ceramic glass at different strain rates[J]. Explosion And Shock Waves, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434
Citation: NIU Huanhuan, YAN Xiaopeng, LUO Haoshun, CHEN Jiajun, LI Zhiqiang. Mechanical response of sapphire transparent ceramic glass at different strain rates[J]. Explosion And Shock Waves, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434

Mechanical response of sapphire transparent ceramic glass at different strain rates

doi: 10.11883/bzycj-2021-0434
  • Received Date: 2021-10-18
  • Rev Recd Date: 2022-02-21
  • Available Online: 2022-03-29
  • Publish Date: 2022-07-25
  • Sapphire (Al2O3) transparent ceramic glass has excellent light transmittance and retains the excellent mechanical properties comparing with traditional ceramics. In order to understand the relationship between strength and strain rate of sapphire transparent ceramic glass and its failure process, the electronic tensile machine and split Hopkinson bar equipment were used to load the specimen at different strain rates (10−4, 10−3, 10−2, 850, 1 100, 1 300, 1 450 s−1). The quasi-static and dynamic compression failure processes of specimen were recorded by high-speed camera. The experimental results show sapphire transparent ceramic glass is a typical brittle material with strain rate effect. With the increase of strain rate, the compressive strength of the sapphire transparent ceramic glass will also increase. The failure cycle of sapphire is long under quasi-static compression, and the crack will expand along the path with the weakest bearing capacity. In addition, the strength curve of sapphire will decline briefly and then continue to rise, which is caused by the increase and propagation of the number of cracks. In the process of dynamic compression, the sapphire reaches the cracking strength in many places, forming more crack sources, and then the crack forms and expands to split the sapphire. When the sapphire transparent ceramic glass is subjected to compression, cracks will appear in the region with the weakest bearing capacity in the process of loading; soon after the cracks take shape and expand along the loading direction, the cracks interlace to reach a saturation state; and finally reach the compressive strength failure. Under dynamic compression, however, due to the loading rate is much higher than the propagation of the crack, several crack sources appear in the sapphirine transparent ceramic glass within a very short period of time, which requires more energy to make the crack forming and extending, exhibiting as the strain rate effect on its macro-scale performance.
  • loading
  • [1]
    JOHNSON R, BISWAS P, RAMAVATH P, et al. Transparent polycrystalline ceramics: an overview [J]. Transactions of the Indian Ceramic Society, 2012, 71(2): 73–85. DOI: 10.1080/0371750X.2012.716230.
    [2]
    KRELL A, KLIMKE J, HUTZLER T. Advanced spinel and sub-μm Al2O3 for transparent armour applications [J]. Journal of the European Ceramic Society, 2009, 29(2): 275–281. DOI: 10.1016/j.jeurceramsoc.2008.03.024.
    [3]
    KANEL G I, NELLIS W J, SAVINYKH A S, et al. Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16-86 GPa [J]. Journal of Applied Physics, 2009, 106(4): 043524. DOI: 10.1063/1.3204940.
    [4]
    MUNSON D E, LAWRENCE R J. Dynamic deformation of polycrystalline alumina [J]. Journal of Applied Physics, 1979, 50(10): 6272–6282. DOI: 10.1063/1.325766.
    [5]
    MCCAULEY J W, STRASSBURGER E, PATEL P, et al. Experimental observations on dynamic response of selected transparent armor materials [J]. Experimental Mechanics, 2013, 53(1): 3–29. DOI: 10.1007/s11340-012-9658-5.
    [6]
    FORQUIN P, ZINSZNER J L. Experimental study of the dynamic fragmentation in transparent ceramic subjected to projectile impact [M]// CASEM D, LAMBERSON L, KIMBERLEY J. Dynamic Behavior of Materials. Cham: Springer, 2017: 165-170. DOI: 10.1007/978-3-319-41132-3_23.
    [7]
    KRELL A, STRASSBURGER E, HUTZLER T, et al. Single and polycrystalline transparent ceramic armor with different crystal structure [J]. Journal of the American Ceramic Society, 2013, 96(9): 2718–2721. DOI: 10.1111/jace.12530.
    [8]
    HANEY E J, SUBHASH G. Damage mechanisms perspective on superior ballistic performance of spinel over sapphire [J]. Experimental Mechanics, 2013, 53(1): 31–46. DOI: 10.1007/s11340-012-9634-0.
    [9]
    KLEISER G J, CHHABILDAS L C, REINHART W D. Comparison of dynamic compression behavior of single crystal sapphire to polycrystalline alumina [J]. International Journal of Impact Engineering, 2011, 38(6): 473–479. DOI: 10.1016/j.ijimpeng.2010.10.018.
    [10]
    HANEY E J, SUBHASH G. Analysis of interacting cracks due to sequential indentations on sapphire [J]. Acta Materialia, 2011, 59(9): 3528–3536. DOI: 10.1016/j.actamat.2011.02.026.
    [11]
    易海兰, 蒋志君, 毛小建, 等. 透明氧化铝陶瓷的研究新进展 [J]. 无机材料学报, 2010, 25(8): 795–800. DOI: 10.3724/SP.J.1077.2010.00795.

    YI H L, JIANG Z J, MAO X J, et al. New development of transparent alumina ceramics [J]. Journal of Inorganic Materials, 2010, 25(8): 795–800. DOI: 10.3724/SP.J.1077.2010.00795.
    [12]
    张晓晴, 姚小虎, 宁建国, 等. Al2O3陶瓷材料应变率相关的动态本构关系研究 [J]. 爆炸与冲击, 2004, 24(3): 226–232.

    ZHANG X Q, YAO X H, NING J G, et al. A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2004, 24(3): 226–232.
    [13]
    刘清风, 刘同祥, 姜峰. 冲击压缩载荷下蓝宝石的动态力学性能试验方法 [J]. 超硬材料工程, 2014, 26(3): 14–18. DOI: 10.3969/j.issn.1673-1433.2014.03.004.

    LIU Q F, LIU T X, JIANG F. The Test method for dynamic mechanical performance of sapphire under the shock compression loading [J]. Superhard Material Engineering, 2014, 26(3): 14–18. DOI: 10.3969/j.issn.1673-1433.2014.03.004.
    [14]
    黄良钊, 张安平. Al2O3陶瓷的动态力学性能研究 [J]. 中国陶瓷, 1999, 35(1): 13–15,21. DOI: 10.16521/j.cnki.issn.1001-9642.1999.01.004.

    HUANG L Z, ZHANG A P. A study of dynamic mechanical properties on Al2O3 ceramics [J]. China Ceramics, 1999, 35(1): 13–15,21. DOI: 10.16521/j.cnki.issn.1001-9642.1999.01.004.
    [15]
    谈瑞, 李海洋, 黄俊宇. Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析 [J]. 爆炸与冲击, 2020, 40(2): 023103. DOI: 10.11883/bzycj-2019-0050.

    TAN R, LI H Y, HUANG J Y. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression [J]. Explosion and Shock Waves, 2020, 40(2): 023103. DOI: 10.11883/bzycj-2019-0050.
    [16]
    HEARD H C, CLINE C F. Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure [J]. Journal of Materials Science, 1980, 15(8): 1889–1897. DOI: 10.1007/BF00550614.
    [17]
    王振, 张超, 王银茂, 等. 飞机风挡无机玻璃在不同应变率下的力学行为 [J]. 爆炸与冲击, 2018, 38(2): 295–301. DOI: 10.11883/bzycj-2016-0186.

    WANG Z, ZHANG C, WANG Y M. Mechanical behaviours of aeronautical inorganic glass at different strain rates [J]. Explosion and Shock Waves, 2018, 38(2): 295–301. DOI: 10.11883/bzycj-2016-0186.
    [18]
    CHEN W N, RAVICHANDRAN G. Dynamic compressive failure of a glass ceramic under lateral confinement [J]. Journal of the Mechanics and Physics of Solids, 1997, 45(8): 1303–1328. DOI: 10.1016/S0022-5096(97)00006-9.
    [19]
    CHEN W, RAVICHANDRAN G. Failure mode transition in ceramics under dynamic multiaxial compression [J]. International Journal of Fracture, 2000, 101(1/2): 141–159. DOI: 10.1023/A:1007672422700.
    [20]
    冯晓伟, 李俊承, 常敬臻, 等. 氧化铝陶瓷受冲击压缩破坏的细观机理研究 [J]. 兵工学报, 2017, 38(12): 2472–2479. DOI: 10.3969/j.issn.1000-1093.2017.12.022.

    FENG X W, LI J C, CHANG J Z, et al. Investigation on mesoscale failure mechanism of alumina under shock compression [J]. Acta Armamentarii, 2017, 38(12): 2472–2479. DOI: 10.3969/j.issn.1000-1093.2017.12.022.
    [21]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 380.
    [22]
    宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率 [J]. 爆炸与冲击, 2005, 25(3): 207–216. DOI: 10.11883/1001-1455(2005)03-0207-10.

    SONG L, HU S S. Stress uniformity and constant strain rate in SHPB test [J]. Explosion and Shock Waves, 2005, 25(3): 207–216. DOI: 10.11883/1001-1455(2005)03-0207-10.
    [23]
    张青艳. 脆性材料在准静态和冲击压缩载荷作用下的动态碎裂过程 [D]. 宁波: 宁波大学, 2019: 26-27.

    ZHANG Q Y. Fragmentations of brittle materials under quasi-static and dynamic compression [D]. Ningbo: Ningbo University, 2019: 26-27.
    [24]
    李二兵, 谭跃虎, 马聪, 等. 三向压力作用下盐岩SHPB试验及动力强度研究 [J]. 岩石力学与工程学报, 2015, 34(S2): 3742–3749. DOI: 10.13722/j.cnki.jrme.2015.0594.

    LI E B, TAN Y H, MA C, et al. Split Hopkinson pressure bar test and dynamic strength research of salt rock under three-pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3742–3749. DOI: 10.13722/j.cnki.jrme.2015.0594.
    [25]
    方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨 [J]. 工程力学, 2014, 31(5): 1–14,26. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.

    FANG Q, HONG J, ZHANG J H, et al. Issues of SHPB test on concrete-like material [J]. Engineering Mechanics, 2014, 31(5): 1–14,26. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (465) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return