Volume 42 Issue 8
Sep.  2022
Turn off MathJax
Article Contents
HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450
Citation: HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450

A method for adjusting and controlling underwater explosion shock wave

doi: 10.11883/bzycj-2021-0450
  • Received Date: 2021-10-29
  • Rev Recd Date: 2022-04-23
  • Available Online: 2022-05-12
  • Publish Date: 2022-09-09
  • The detonation position and the shape of the explosive have a significant influence on the pressure of the underwater explosion shock wave, which makes it possible to use a small charge to form a shock wave that is equivalent to a large charge in a local direction. A charge design method to adjust the amplitude and duration of shock wave pressure was established based on the slender charge structure and parameter optimization design to carry out an underwater explosion shock resistance test of ship structure or equipment using a small charge. Firstly, based on the simple wave theory, the principle of shock wave pressure control and the objective function and constraint conditions of optimal design of charge parameters are given. Then, an independently developed software is used to study the energy of underwater explosion of slender charge, and the confidence degree of numerical simulation is verified through experiments. It is found that the influence of initiation position and charge shape on the pressure peak and duration of the underwater explosion shock wave is significant. The duration of shock wave pressure of slender charge column underwater explosion can be determined by geometric approximation. Finally, to further investigate the effectiveness of the proposed method, two charge schemes equivalent to the shock wave pressure of the prototype were designed and verified by numerical simulation. The prototype is taken from the pressure-time curve of the underwater explosion shock wave with TNT equivalent to 1000 kg and a stand-off of 100 m. The comparison results show that the designed charge can form a shock wave pressure-time curve equivalent to that of the prototype on the side of the initiation end within a predetermined duration. Since the bubble pulse is not considered, the established method applies only to the middle and far-field explosion shock problem.
  • loading
  • [1]
    金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.

    JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
    [2]
    吴桐, 冯麟涵. 冲击下舰载机柜内部冲击环境分析 [J]. 兵器装备工程学报, 2018, 39(10): 58–62. DOI: 10.11809/bqzbgexb2018.10.012.

    WU T, FENG L H. Analysis of shock environment in shipboard aircraft cabinet under shock [J]. Journal of Ordnance Equipment Engineering, 2018, 39(10): 58–62. DOI: 10.11809/bqzbgexb2018.10.012.
    [3]
    王贡献, 褚德英, 张磊, 等. 舰船设备冲击试验机研究进展 [J]. 振动与冲击, 2007, 26(2): 152–159. DOI: 10.3969/j.issn.1000-3835.2007.02.037.

    WANG G X, CHU D Y, ZHANG L, et al. Advances in shock test facilities for shipboard equipments [J]. Journal of Vibration and Shock, 2007, 26(2): 152–159. DOI: 10.3969/j.issn.1000-3835.2007.02.037.
    [4]
    刁爱民, 王慰慈, 朱金晏. 摆锤式冲击台与浮动冲击平台冲击动力特性对比试验研究 [J]. 舰船科学技术, 2019, 41(12): 203–205. DOI: 10.3404/j.issn.1672-7649.2019.12.039.

    DIAO A M, WANG W C, ZHU J Y. Experimental study on impact dynamics of pendulum impact table and floating impact platform [J]. Ship Science and Technology, 2019, 41(12): 203–205. DOI: 10.3404/j.issn.1672-7649.2019.12.039.
    [5]
    陈学兵, 何斌, 陈辉, 等. 标准浮动冲击平台冲击环境试验及分析 [J]. 兵工学报, 2014, 35(S2): 8–12.

    CHEN X B, HE B, CHEN H, et al. Test and analysis about the shock environment of standard floating shock platform [J]. Acta Armamentarii, 2014, 35(S2): 8–12.
    [6]
    王军, 姚熊亮, 郭君. 中型浮动冲击平台结构设计研究 [J]. 振动与冲击, 2014, 33(7): 86–91. DOI: 10.13465/j.cnki.jvs.2014.07.015.

    WANG J, YAO X L, GUO J. Structural design for a intermediate floating shock platform [J]. Journal of Vibration and Shock, 2014, 33(7): 86–91. DOI: 10.13465/j.cnki.jvs.2014.07.015.
    [7]
    金辉, 高鑫, 奚慧魏, 等. 中型浮动冲击平台系统设计及冲击环境分析 [J]. 现代应用物理, 2019, 10(3): 66–71. DOI: 10.12061/j.issn.2095-6223.2019.031001.

    JIN H, GAO X, XI H W, et al. Design and impact environment analysis of medium floating shock platform [J]. Modern Applied Physics, 2019, 10(3): 66–71. DOI: 10.12061/j.issn.2095-6223.2019.031001.
    [8]
    张磊, 杜志鹏, 吴静波, 等. 200t级浮动冲击平台水下爆炸试验低频冲击响应数据分析 [J]. 中国舰船研究, 2018, 13(3): 60–65. DOI: 10.19693/j.issn.1673-3185.01149.

    ZHANG L, DU Z P, WU J B, et al. Low-frequency shock response data analysis of underwater explosion test of 200-ton class floating shock platform [J]. Chinese Journal of Ship Research, 2018, 13(3): 60–65. DOI: 10.19693/j.issn.1673-3185.01149.
    [9]
    张效慈. 水下爆炸试验相似准则 [J]. 船舶力学, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.

    ZHANG X C. Similarity criteria for experiment of underwater explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.
    [10]
    GAO Y, WANG S S, ZHANG J X, et al. Effects of underwater explosion depth on shock wave overpressure and energy [J]. Physics of Fluids, 2022, 34(3): 037108. DOI: 10.1063/5.0081107.
    [11]
    COLE R H. Underwater explosions [M]. New Jersey: Princeton University Press, 1948: 252–253.
    [12]
    HAMMOND L. Underwater shock wave characteristics of cylindrical charges: DSTO-GD-0029 [R]. Australia: Aeronautical and Maritime Research Laboratory, 1995.
    [13]
    STERNBERG H M. Underwater detonation of pentolite cylinders [J]. Physics of Fluids, 1987, 30(3): 761–769. DOI: 10.1063/1.866326.
    [14]
    赵继波, 谭多望, 李金河, 等. TNT药柱水中爆炸近场压力轴向衰减规律 [J]. 爆炸与冲击, 2008, 28(6): 539–543. DOI: 10.11883/1001-1455(2008)06-0539-05.

    ZHAO J B, TAN D W, LI J H, et al. Axial pressure damping of cylindrical TNT charges in the near underwater-explosion field [J]. Explosion and Shock Waves, 2008, 28(6): 539–543. DOI: 10.11883/1001-1455(2008)06-0539-05.
    [15]
    李金河, 赵继波, 谭多望, 等. 不同起爆方式对含铝炸药水中爆炸近场冲击波压力的影响 [J]. 高压物理学报, 2012, 26(3): 289–293. DOI: 10.11858/gywlxb.2012.03.007.

    LI J H, ZHAO J B, TAN D W, et al. Effect on the near field shock wave pressure of underwater explosion of aluminized explosive at different initiation modes [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 289–293. DOI: 10.11858/gywlxb.2012.03.007.
    [16]
    王长利, 周刚, 马坤, 等. 聚能装药水下爆炸冲击波载荷规律 [J]. 高压物理学报, 2017, 31(4): 453–461. DOI: 10.11858/gywlxb.2017.04.014.

    WANG C L, ZHOU G, MA K, et al. Shockwave characteristics of shaped charge exploded underwater [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 453–461. DOI: 10.11858/gywlxb.2017.04.014.
    [17]
    ZHANG A M, WANG S P, HUANG C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics [J]. European Journal of Mechanics-B/Fluids, 2013, 42: 69–91. DOI: 10.1016/j.euromechflu.2013.06.008.
    [18]
    ZHANG A M, YANG W S, HUANG C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination [J]. Computers & Fluids, 2013, 71: 169–178. DOI: 10.1016/j.compfluid.2012.10.012.
    [19]
    黄超, 汪斌, 刘仓理, 等. 非球形水下爆炸气泡坍塌机制 [J]. 高压物理学报, 2012, 26(5): 501–507. DOI: 10.11858/gywlxb.2012.05.004.

    HUANG C, WANG B, LIU C L, et al. On the mechanism of non-spherical underwater explosion bubble collapse [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 501–507. DOI: 10.11858/gywlxb.2012.05.004.
    [20]
    ZHANG Z F, WANG C, WANG L K, et al. Underwater explosion of cylindrical charge near plates: analysis of pressure characteristics and cavitation effects [J]. International Journal of Impact Engineering, 2018, 121: 91–105. DOI: 10.1016/j.ijimpeng.2018.06.009.
    [21]
    HUANG C, LIU M B, WANG B, et al. Underwater explosion of slender explosives: directional effects of shock waves and structure responses [J]. International Journal of Impact Engineering, 2019, 130: 266–280. DOI: 10.1016/j.ijimpeng.2019.04.018.
    [22]
    徐维铮, 黄超, 张磐, 等. 锥形长药柱水下爆炸冲击波参数计算方法 [J]. 爆炸与冲击, 2022, 42(1): 014203. DOI: 10.11883/bzycj-2021-0095.

    XU W Z, HUANG C, ZHANG P, et al. A method for calculating underwater explosion shock wave parameters of slender cone-shaped charges [J]. Explosion and Shock Waves, 2022, 42(1): 014203. DOI: 10.11883/bzycj-2021-0095.
    [23]
    孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 228–230.

    SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 228–230.
    [24]
    曾令玉, 蔡尚, 王诗平. 水下爆炸气泡对舰船冲击环境的影响 [J]. 中国舰船研究, 2018, 13(3): 66–71. DOI: 10.19693/j.issn.1673-3185.01033.

    ZENG L Y, CAI S, WANG S P. Effects of underwater explosion bubble on shock environment of warship [J]. Chinese Journal of Ship Research, 2018, 13(3): 66–71. DOI: 10.19693/j.issn.1673-3185.01033.
    [25]
    王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.

    WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
    [26]
    TIAN Z L, LIU Y L, ZHANG A M, et al. Jet development and impact load of underwater explosion bubble on solid wall [J]. Applied Ocean Research, 2020, 95: 102013. DOI: 10.1016/j.apor.2019.102013.
    [27]
    黄超, 汪斌, 姚熊亮, 等. 实验室尺度水下爆炸气泡实验方法 [J]. 传感器与微系统, 2011, 30(12): 75–77, 81. DOI: 10.3969/j.issn.1000-9787.2011.12.023.

    HUANG C, WANG B, YAO X L, et al. Laboratory-scale underwater explosion bubble experiment method [J]. Transducer and Microsystem Technologies, 2011, 30(12): 75–77, 81. DOI: 10.3969/j.issn.1000-9787.2011.12.023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (626) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return