WANG Ai-feng, ZHAO Wei, JIANG Zong-lin. Cellularstructureofobliquedetonationandpropagationoftransversewave[J]. Explosion And Shock Waves, 2010, 30(4): 349-354. doi: 10.11883/1001-1455(2010)04-0349-06
Citation: YANG Leifeng, CHANG Xinzhe, XU Fei, WANG Shuai, LIU Xiaochuan, XI Xulong, LI Xiaocheng. Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact[J]. Explosion And Shock Waves, 2022, 42(5): 053205. doi: 10.11883/bzycj-2021-0452

Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact

doi: 10.11883/bzycj-2021-0452
  • Received Date: 2021-11-02
  • Rev Recd Date: 2022-01-04
  • Available Online: 2022-04-24
  • Publish Date: 2022-05-27
  • In scaling the dynamic responses of thin-walled cylindrical shells subjected to axial impact loading, the thickness cannot be adjusted according to the same scale as the radius and height due to the thin wall characteristics. Hence, geometrically-distorted models would be used, and the traditional scaling law cannot describe the relationship between the dynamic responses of the prototype and the geometrically-distorted model. In this paper, the scaling law for this case was derived for elastic-ideal plastic thin-walled cylindrical shells under axial impact loading. For strain hardening and strain-rate hardening material, based on the average load, deformation energy, and displacement of the shell in the axisymmetric deformation mode, the dimensionless numbers of three key design parameters, namely the stress, mass, and displacement, were obtained through the law of energy conservation. Then, the optimal approximation of the flow stress predicted by the distorted scaled model to the flow stress of the prototype was established on a given strain and strain rate interval. In this way, the derived scaling law can be applied to the case considering the coupling effects of geometric distortion, strain-rate sensitivity, and strain hardening. Finally, several finite element models of thin-walled cylindrical shell models subject to axial mass impact were established. These models use the elastic-ideal plastic material model and the general material model with strain-rate hardening and strain hardening effects. The modified impact velocity and impact mass were obtained by the present method using the geometrically-distorted model, which verified the effectiveness and correctness of the proposed scaling law. The results show that the geometrically distorted model corrected by the method proposed in this article can quite accurately predict the dynamic responses of the prototype, and significantly reduce the errors in the dynamic responses of the thin-walled cylindrical shell subjected to axial impact loading, especially the average load and deformation energy.
  • [1]
    JONES N. Structural impact [M]. 2nd ed. New York: Cambridge University Press, 2012.
    [2]
    徐海斌, 张德志, 谭书舜, 等. 轴向压缩的金属薄壁圆管相似律的实验研究 [C] // 第20届全国结构工程学术会议论文集. 浙江宁波: 中国力学学会工程力学编辑部, 2011: 554–559.
    [3]
    ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10–15. DOI: 10.1093/qjmam/13.1.10.
    [4]
    ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes [J]. International Journal of Impact Engineering, 1984, 2(3): 263–281. DOI: 10.1016/0734-743X(84)90010-1.
    [5]
    KARAGIOZOVA D, JONES N. Influence of stress waves on the dynamic progressive and dynamic plastic buckling of cylindrical shells [J]. International Journal of Solids and Structures, 2001, 38(38/39): 6723–6749. DOI: 10.1016/S0020-7683(01)00111-1.
    [6]
    KARAGIOZOVA D, NURICK G N, YUEN S C K. Energy absorption of aluminium alloy circular and square tubes under an axial explosive load [J]. Thin-Walled Structures, 2005, 43(6): 956–982. DOI: 10.1016/j.tws.2004.11.002.
    [7]
    LU G, YU J L, ZHANG J J, et al. Alexander revisited: upper- and lower-bound approaches for axial crushing of a circular tube [J]. International Journal of Mechanical Sciences, 2021, 206: 106610. DOI: 10.1016/j.ijmecsci.2021.106610.
    [8]
    CASABURO A, PETRONE G, FRANCO F, et al. A review of similitude methods for structural engineering [J]. Applied Mechanics Reviews, 2019, 71(3): 030802. DOI: 10.1115/1.4043787.
    [9]
    COUTINHO C P, BAPTISTA A J, RODRIGUES J D. Reduced scale models based on similitude theory: a review up to 2015 [J]. Engineering Structures, 2016, 119: 81–94. DOI: 10.1016/j.engstruct.2016.04.016.
    [10]
    OSHIRO R E, ALVES M. Scaling impacted structures [J]. Archive of Applied Mechanics, 2004, 74(1/2): 130–145. DOI: 10.1007/BF02637214.
    [11]
    OSHIRO R E, ALVES M. Scaling of cylindrical shells under axial impact [J]. International Journal of Impact Engineering, 2007, 34(1): 89–103. DOI: 10.1016/j.ijimpeng.2006.02.003.
    [12]
    王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究 [J]. 力学学报, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.

    WANG S, XU F, DAI Z, et al. A direct scaling method for the distortion problems of structural impact [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.
    [13]
    WANG S, XU F, ZHANG X Y, et al. Material similarity of scaled models [J]. International Journal of Impact Engineering, 2021, 156: 103951. DOI: 10.1016/j.ijimpeng.2021.103951.
    [14]
    李肖成, 徐绯, 杨磊峰, 等. 薄板在冲击载荷下线弹性理想塑性响应的相似性研究 [J]. 爆炸与冲击, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.

    LI X C, XU F, YANG L F, et al. Study on the similarity of elasticity and ideal plasticity response of thin plate under impact loading [J]. Explosion and Shock Waves, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
    [15]
    秦健, 张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法 [J]. 爆炸与冲击, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.

    QIN J, ZHANG Z H. A scaling method for predicting dynamic responses of stiffened plates made of materials different from experimental models [J]. Explosion and Shock Waves, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.
    [16]
    ALVES M, OSHIRO R E, CALLE M A G, et al. Scaling and structural impact [J]. Procedia Engineering, 2017, 173: 391–396. DOI: 10.1016/j.proeng.2016.12.036.
    [17]
    MAZZARIOL L M, ALVES M. Similarity laws of structures under impact load: geometric and material distortion [J]. International Journal of Mechanical Sciences, 2019, 157/158: 633–647. DOI: 10.1016/j.ijmecsci.2019.05.011.
    [18]
    WANG S, XU F, DAI Z. Suggestion of the DLV dimensionless number system to represent the scaled behavior of structures under impact loads [J]. Archive of Applied Mechanics, 2020, 90(4): 707–719. DOI: 10.1007/s00419-019-01635-9.
    [19]
    WANG S, XU F, ZHANG X Y, et al. A directional framework of similarity laws for geometrically distorted structures subjected to impact loads [J]. International Journal of Impact Engineering, 2022, 161: 104092. DOI: 10.1016/j.ijimpeng.2021.104092.
    [20]
    李志斌, 虞吉林, 郑志军, 等. 薄壁管及其泡沫金属填充结构耐撞性的实验研究 [J]. 实验力学, 2012, 27(1): 77–86.

    LI Z B, YU J L, ZHENG Z J, et al. An experimental study on the crashworthiness of thin-walled tubes and their metallic foam-filled structures [J]. Journal of Experimental Mechanics, 2012, 27(1): 77–86.
    [21]
    朱文波, 杨黎明, 余同希. 薄壁圆管轴向冲击下的动态特性研究 [J]. 宁波大学学报(理工版), 2014, 27(2): 92–96.

    ZHU W B, YANG L M, YU T X. Study on dynamic properties of thin-walled circular tubes under axial compression [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2014, 27(2): 92–96.
    [22]
    余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析 [M]. 北京: 科学出版社, 2019.
    [23]
    白以龙, 黄筑平, 虞吉林, 等. 材料和结构的动态响应 [M]. 合肥: 中国科学技术大学出版社, 2005.
    [24]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C] // Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands, 1983: 541–547.
  • Relative Articles

    [1]LIU Xiaobo, LI Shuai, ZHANG Aman. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion[J]. Explosion And Shock Waves, 2022, 42(1): 014202. doi: 10.11883/bzycj-2021-0106
    [2]WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173
    [3]JING Lin, LIU Kai, WANG Chengquan. Recentadvances in the collision passive safety of trains andimpact biological damage of drivers and passengers[J]. Explosion And Shock Waves, 2021, 41(12): 121405. doi: 10.11883/bzycj-2021-0330
    [4]LI Zhijie, YOU Xiaochuan, LIU Zhanli, DU Zhibo, ZHANG Yi, YANG Ce, ZHUANG Zhuo. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves[J]. Explosion And Shock Waves, 2020, 40(1): 015901. doi: 10.11883/bzycj-2018-0348
    [5]GUO Rui, LIU Lei. Modeling on the reflection and focusing process of the underwater explosion shock waves by an ellipsoidal reflector[J]. Explosion And Shock Waves, 2018, 38(1): 174-182. doi: 10.11883/bzycj-2017-0024
    [6]Fan Zhi-qiang, Ma Hong-hao, Shen Zhao-wu, Jiang Yao-gang. Acoustic characteristics of underwater continuous pulse shock wave[J]. Explosion And Shock Waves, 2013, 33(5): 501-506. doi: 10.11883/1001-1455(2013)05-0501-06
    [7]Lü Yan-wei, TAN Cheng-wen, YU Xiao-dong, LI Zhi-li, WANG De-sheng, WANG Hui-juan, XIAOYan-hua, BAI Yan-qiang, MA Hong-lei. Astudyondamageeffectofdifferentvariableshockpressurelevels torabbitphysiologicalsystem[J]. Explosion And Shock Waves, 2012, 32(1): 97-102. doi: 10.11883/1001-1455(2012)01-0097-06
    [8]ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05
    [9]SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves[J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06
    [10]LI Hong-tao, LU Wen-bo, SHU Da-qiang, ZHU Chuan-yun. Study on the safety velocity for concrete lining under P wave loading[J]. Explosion And Shock Waves, 2007, 27(1): 34-39. doi: 10.11883/1001-1455(2007)01-0034-06
  • Cited by

    Periodical cited type(3)

    1. 卢林,李文杰,万宇,杜洪波,杨宵. 气泡帷幕对爆破冲击波的削减效果及鱼类安全防护研究. 水运工程. 2024(01): 8-14 .
    2. 黄业中,陈其龙,覃峰. 水下爆破阻波防护帘的防护性能研究. 西部交通科技. 2024(12): 216-218 .
    3. 张冬洋,曾柏瑞. 降低水下爆破作业冲击波噪声施工技术研究. 中国水运. 2023(07): 82-85 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(7)

    Article Metrics

    Article views (480) PDF downloads(102) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return