ZHANG Yuqi, JIANG Nan, ZHOU Chuanbo, YAO Yingkang, LI Haibo, CAI Zhongwei, HU Zongyao. Dynamic failure mechanism of HDPE pipelines with a gasketed bell and spigot joint subjected to blasting seismic load[J]. Explosion And Shock Waves, 2022, 42(12): 125101. doi: 10.11883/bzycj-2021-0492
Citation: ZHANG Yuqi, JIANG Nan, ZHOU Chuanbo, YAO Yingkang, LI Haibo, CAI Zhongwei, HU Zongyao. Dynamic failure mechanism of HDPE pipelines with a gasketed bell and spigot joint subjected to blasting seismic load[J]. Explosion And Shock Waves, 2022, 42(12): 125101. doi: 10.11883/bzycj-2021-0492

Dynamic failure mechanism of HDPE pipelines with a gasketed bell and spigot joint subjected to blasting seismic load

doi: 10.11883/bzycj-2021-0492
  • Received Date: 2021-11-24
  • Accepted Date: 2022-11-10
  • Rev Recd Date: 2022-01-04
  • Available Online: 2022-11-14
  • Publish Date: 2022-12-08
  • Pipelines with a gasketed bell and spigot joint are more vulnerable to external load damage, leading to pipeline failure. To ensure the safe operation of adjacent high-density polyethylene (HDPE) bellows during blasting excavation, control of the influence of blasting vibration load on the pipeline is the main focus. The vibration velocity and dynamic strain response data of the pipeline were collected from the field test of a full-scale embedded single-segment HDPE bellow. The HDPE bellow models without socket contact and with an elastic sealing ring were established using the LS-DYNA numerical simulation software. The reliability of the model parameters of the HDPE bellows without a joint was verified by the field test data, and the response laws and failure mechanisms of the structural displacement, vibration velocity, and effective stress of the HDPE bellows with a gasketed bell and spigot joint were compared and analyzed. The safe vibration velocity of the pipe was determined using the pipeline response law and the allowable rotation angle of the interface in conjunction with the current specification. The research results show that the resultant vibration velocity, resultant displacement, and effective stress of the bellow with a gasketed bell and spigot joint are greater than those of the bellow without a joint. At the same cross-section, the resultant vibration velocity and effective stress on the explosion side of the bellow with a gasketed bell and spigot joint are higher, and the maximum resultant displacement occurs on the back of the explosion side of the cross-section. Along the axis direction of the pipeline, the resultant displacement and the resultant vibration velocity of the pipeline decrease continuously from the center to both ends of the pipeline, and the resultant displacement of the pipeline with a gasketed bell and spigot joint is larger. The safe vibration velocity of the pipeline with a gasketed bell and spigot joint under such working conditions is 24.77 cm/s, according to the allowable rotation angle of the interface.
  • [1]
    VIPULANANDAN C, LIU J. Sewer pipe-joint infiltration test protocol developed by CIGMAT [C] // Pipeline Division Specialty Conference 2005. Houston, USA: ASCE, 2005: 553–563.
    [2]
    BALKAYA M, MOORE I D. Analysis of a gasketed polyvinyl chloride pipe joint [J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2131(1): 113–122. DOI: 10.3141/2131-11.
    [3]
    GIANNAROS E, KOTZAKOLIOS T, KOSTOPOULOS V. Blast response of composite pipeline structure using finite element techniques [J]. Journal of Composite Materials, 2016, 50(25): 3459–3476. DOI: 10.1177/0021998315618768.
    [4]
    ZHANG J, ZHANG L, LIANG Z. Buckling failure of a buried pipeline subjected to ground explosions [J]. Process Safety and Environmental Protection, 2018, 114: 36–47. DOI: 10.1016/j.psep.2017.11.017.
    [5]
    PARVIZ M, AMINNEJAD B, FIOUZ A. Numerical simulation of dynamic response of water in buried pipeline under explosion [J]. KSCE Journal of Civil Engineering, 2017, 21(7): 2798–2806. DOI: 10.1007/s12205-017-0889-y.
    [6]
    TANG Q C, JIANG N, YAO Y K, et al. Experimental investigation on response characteristics of buried pipelines under surface explosion load [J]. International Journal of Pressure Vessels and Piping, 2020, 183: 104101. DOI: 10.1016/j.ijpvp.2020.104101.
    [7]
    GUAN X M, WANG X C, ZHU Z, et al. Ground vibration test and dynamic response of horseshoe-shaped pipeline during tunnel blasting excavation in pebbly sandy soil [J]. Geotechnical and Geological Engineering, 2020, 38(4): 3725–3736. DOI: 10.1007/s10706-020-01249-x.
    [8]
    JIANG N, GAO T, ZHOU C B, et al. Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel [J]. Tunnelling and Underground Space Technology, 2018, 81: 590–601. DOI: 10.1016/j.tust.2018.08.022.
    [9]
    JIANG N, ZHU B, HE X, et al. Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation [J]. Tunnelling and Underground Space Technology, 2020, 102: 103448. DOI: 10.1016/j.tust.2020.103448.
    [10]
    WU T Y, JIANG N, ZHOU C B, et al. Evaluate of anti-explosion for high-pressure gas steel pipeline subjected to ground explosion [J]. Journal of Constructional Steel Research, 2021, 177: 106429. DOI: 10.1016/j.jcsr.2020.106429.
    [11]
    王海涛, 金慧, 贾金青, 等. 地铁隧道钻爆法施工对邻近埋地管道影响的模型试验研究 [J]. 岩石力学与工程学报, 2018, 37(Suppl 1): 3332–3339. DOI: 10.13722/j.cnki.jrme.2016.1409.

    WANG H T, JIN H, JIA J Q, et al. Model test study on the influence of subway tunnel drilling and blasting construction on adjacent buried pipelines [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Suppl 1): 3332–3339. DOI: 10.13722/j.cnki.jrme.2016.1409.
    [12]
    ZHANG L, LIANG Z, ZHANG J. Mechanical response of a buried pipeline to explosion loading [J]. Journal of Failure Analysis and Prevention, 2016, 16(4): 576–582. DOI: 10.1007/s11668-016-0121-2.
    [13]
    BALKAYA M, MOORE I D, SAĞLAMER A. Study of non-uniform bedding support under continuous PVC water distribution pipes [J]. Tunnelling and Underground Space Technology, 2013, 35: 99–108. DOI: 10.1016/j.tust.2012.12.005.
    [14]
    CHAALLAL O, AROCKIASAMY M, GODAT A. Field test performance of buried flexible pipes under live truck loads [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): 04014124. DOI: 10.1061/(ASCE)CF.1943-5509.0000624.
    [15]
    贾永胜, 钟冬望, 姚颖康, 等. 基坑爆破预留层对围护桩的保护作用数值分析 [J]. 工程爆破, 2017, 23(5): 1–4, 21. DOI: 10.3969/j.issn.1006-7051.2017.05.001.

    JIA Y S, ZHONG D W, YAO Y K, et al. Numerical calculation of the barrier effect of the pre-protective layer on bored piles in deep foundation pit blasting [J]. Engineering Blasting, 2017, 23(5): 1–4, 21. DOI: 10.3969/j.issn.1006-7051.2017.05.001.
    [16]
    张震, 周传波, 路世伟, 等. 超浅埋地铁站通道爆破暗挖地表振动传播特征 [J]. 中南大学学报(自然科学版), 2017, 48(8): 2119–2125. DOI: 10.11817/j.issn.1672-7207.2017.08.020.

    ZHANG Z, ZHOU C B, LU S W, et al. Propagation characteristics of ground vibration induced by subsurface blasting excavation in an ultra-shallow buried underpass [J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2119–2125. DOI: 10.11817/j.issn.1672-7207.2017.08.020.
    [17]
    武卫星, 郭晓刚, 朱敏. 武汉轨道交通广虎区间隧道爆破施工方案优化 [J]. 人民长江, 2010, 41(10): 30–33. DOI: 10.16232/j.cnki.1001-4179.2010.10.009.

    WU W X, GUO X G, ZHU M. Optimization of blasting construction scheme of Guang-Hu section subway tunnels in Wuhan [J]. Yangtze River, 2010, 41(10): 30–33. DOI: 10.16232/j.cnki.1001-4179.2010.10.009.
    [18]
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 给水排水管道工程施工及验收规范: GB 50268—2008 [S]. 北京: 中国建筑工业出版社, 2008.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for construction and acceptance ofwater and sewerage pipeline works: GB 50268—2008 [S]. Beijing, China: China Architecture & Building Press, 2008.
    [19]
    张玉琦, 蒋楠, 贾永胜, 等. 爆破地震荷载作用下高密度聚乙烯波纹管动力响应试验研究 [J]. 爆炸与冲击, 2020, 40(9): 095901. DOI: 10.11883/bzycj-2019-0399.

    ZHANG Y Q, JIANG N, JIA Y S, et al. Experimental study on dynamic response of high-density polyethylene bellows under blasting seismic load [J]. Explosion and Shock Waves, 2020, 40(9): 095901. DOI: 10.11883/bzycj-2019-0399.
    [20]
    ZHU B, JIANG N, ZHOU C B, et al. Dynamic failure behavior of buried cast iron gas pipeline with local external corrosion subjected to blasting vibration [J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103803. DOI: 10.1016/j.jngse.2021.103803.
    [21]
    HALLQUIST J. LS-DYNA keyword user’s manual R8.0 [Z]. California, USA: Livermore Software Technology Corporation, 2015.
    [22]
    中华人民共和国建设部. 室外给水排水和燃气热力工程抗震设计规范: GB 50032—2003 [S]. 北京: 中国标准出版社, 2003.

    Ministry of Construction of the People’s Republic of China. Code for seismic design of outdoor water supply sewerage gas and heating engineering: GB 50032—2003 [S]. Beijing, China: Standards Press of China, 2003.
    [23]
    贵州省住房和城乡建设厅. 室外埋地聚乙烯(PE)给水管道工程技术规程: DBJ52T 039—2017 [S]. 贵阳: 贵州省住房和城乡建设厅, 2017.

    Guizhou Provincial Department of Housing and Urban Rural Development. Technical code of buried polyethylene pipeline for water supply engineering: DBJ52T 039—2017 [S]. Guiyang, China: Guizhou Provincial Department of Housing and Urban Rural Development, 2017.
    [24]
    QIN X G, NI P P. Kinematics of bell-spigot joints in vitrified clay pipelines under differential ground movement [J]. Tunnelling and Underground Space Technology, 2019, 91: 103005. DOI: 10.1016/j.tust.2019.103005.
    [25]
    ZHAI K J, ZHANG C B, FANG H Y, et al. Mechanical responses of bell-and-spigot joints in buried prestressed concrete cylinder pipe under coupled service and surcharge loads [J]. Structural Concrete, 2021, 22(2): 827–844. DOI: 10.1002/suco.201900568.
    [26]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722—2014 [S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Safety regulations for blasting: GB 6722—2014 [S]. Beijing, China: Standards Press of China, 2015.
  • Relative Articles

    [1]SU Qiong, CHENG Yuehua, WU Hao. Flexural damage assessment for UHPC panels under blast loadings[J]. Explosion And Shock Waves, 2023, 43(12): 125103. doi: 10.11883/bzycj-2023-0160
    [2]GENG Shaobo, CHEN Jialong, ZHAO Zhou, NIU Yanwei. A study on vibration displacements of beam members under air blast loading based on the bilinear resistance model[J]. Explosion And Shock Waves, 2022, 42(10): 105102. doi: 10.11883/bzycj-2021-0524
    [3]ZENG Fan, XIAO Guizhong, FENG Xiaowei, HUANG Chao, TIAN Rong. A damage assessment method for masonry structures subjected to long duration blast loading[J]. Explosion And Shock Waves, 2021, 41(10): 105101. doi: 10.11883/bzycj-2020-0399
    [4]HE Li, ZHONG Dongwang, LI Peng, SONG Kun, SI Jianfeng. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel[J]. Explosion And Shock Waves, 2020, 40(7): 075201. doi: 10.11883/bzycj-2019-0255
    [5]GUO Xinxin, LIU Jinchao, WANG Bo, YU Wei, WANG Zhenyu, LI Haobin. Safety control standard of blasting vibration for tunnels with existing cracks and cavities[J]. Explosion And Shock Waves, 2020, 40(11): 115201. doi: 10.11883/bzycj-2019-0315
    [6]XIA Yuqing, JIANG Nan, YAO Yingkang, ZHOU Chuanbo, LUO Xuedong, WU Tingyao. Dynamic responses of a concrete pipeline with bell-and-spigot joints buried in a silty clay layer to blasting seismic waves[J]. Explosion And Shock Waves, 2020, 40(4): 043302. doi: 10.11883/bzycj-2019-0207
    [7]ZHANG Yuqi, JIANG Nan, JIA Yongsheng, ZHOU Chuanbo, LUO Xuedong, WU Tingyao. Experimental study on dynamic response of high-density polyethylene bellows under blasting seismic load[J]. Explosion And Shock Waves, 2020, 40(9): 095901. doi: 10.11883/bzycj-2019-0399
    [8]ZHANG Xiaojun, WANG Xuguang, WANG Yinjun, YU Yalun, WU Chunping, YANG Deqiang. Blasting vibration evaluation and safety dose calculation based on normal distribution[J]. Explosion And Shock Waves, 2018, 38(5): 1115-1120. doi: 10.11883/bzycj-2017-0091
    [9]MA Chong, ZHAN Hongbing, YAO Wenmin, YU Haibing. Stability and safety criterion of a slope with weak interlayer under blasting vibration[J]. Explosion And Shock Waves, 2018, 38(3): 563-571. doi: 10.11883/bzycj-2016-0275
    [10]LIU Qiang, SHI Fuqiang, CHI En'an, LIAO Xueyan, TANG Yufeng. Blasting vibration safety criterion for semi-ellipse-shaped shaft wall[J]. Explosion And Shock Waves, 2018, 38(4): 768-776. doi: 10.11883/bzycj-2016-0334
    [11]XU Cimin, YAO Wenjuan, FANG Tingchen. Variational analysis in safety assessment for slab-shaped reinforced concrete structure's load plate in gas explosion[J]. Explosion And Shock Waves, 2018, 38(2): 339-344. doi: 10.11883/bzycj-2016-0231
    [12]Sun Shaochen, Bi Mingshu, Ding Chunhui, Hu Xiyu, Liu Gang, Feng Yu. Experimental investigation and numerical simulation of flame propagation and quenching process in the in-line crimped-ribbon flame arrester[J]. Explosion And Shock Waves, 2017, 37(2): 353-364. doi: 10.11883/1001-1455(2017)02-0353-12
    [13]Zhang Yu, Li Guoqiang, Chen Kepeng, Chen Airong. Research advances of safety assessment of bridges under blast load[J]. Explosion And Shock Waves, 2016, 36(1): 135-144. doi: 10.11883/1001-1455(2016)01-0135-10
    [14]Liang Shu-feng, Wang Yu-tao, Liu Dian-shu, Li Kui, Li Ming-hui. Determination of safety coefficient for predicting blasting vibration velocity[J]. Explosion And Shock Waves, 2015, 35(5): 741-746. doi: 10.11883/1001-1455(2015)05-0741-06
    [15]Zhu Jun, Yang Jian-hua, Lu Wen-bo, Chen Ming, Yan Peng. Influences of blasting vibration on the sidewall of underground tunnel[J]. Explosion And Shock Waves, 2014, 34(2): 153-160. doi: 10.11883/1001-1455(2014)02-0153-08
    [16]ZHONG Guo-sheng, FANG Ying-guang, GU Ren-guo, ZHAO Kui. Safety assessment of structures by blasting vibration based on wavelet analysis[J]. Explosion And Shock Waves, 2009, 29(1): 35-40. doi: 10.11883/1001-1455(2009)01-0035-06
    [17]LI Hong-tao, LU Wen-bo, SHU Da-qiang, ZHU Chuan-yun. Study on the safety velocity for concrete lining under P wave loading[J]. Explosion And Shock Waves, 2007, 27(1): 34-39. doi: 10.11883/1001-1455(2007)01-0034-06
  • Cited by

    Periodical cited type(3)

    1. 蒙贤忠,夏宇磬,周传波,冯庆高,蒋楠,杨玉民. 土–岩地层水平孔爆破诱发振动传播特征及预测. 岩石力学与工程学报. 2025(03): 737-751 .
    2. 王建强,巴智坤,杨秋伟,赵卓,朋茜. 爆破振动作用下桥梁桩孔稳定性振动台试验研究. 桥梁建设. 2024(03): 85-92 .
    3. 王梓宇,李胜林,李黎,凌天龙,梁书锋,孙旭. 隧道爆破地震作用下燃气管道动力响应规律研究. 爆破. 2024(03): 212-221+247 .

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (236) PDF downloads(42) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return