Citation: | WANG Shisheng, BAO Wenchun, HAN Jingyong, SUN Tiezhi, ZHANG Guiyong. Numerical study on the flow field and load characteristics of a head-ventilated revolving body during water entry[J]. Explosion And Shock Waves, 2022, 42(5): 053201. doi: 10.11883/bzycj-2021-0494 |
[1] |
张岳青, 蔡卫军, 李建辰. 鱼雷斜入水过程非定常运动仿真研究 [J]. 船舶力学, 2019, 23(1): 20–28. DOI: 10.3969/j.issn.1007-7294.2019.01.003.
ZHANG Y Q, CAI W J, LI J C. Study of unsteady motion simulation for the torpedo oblique water entry problem [J]. Journal of Ship Mechanics, 2019, 23(1): 20–28. DOI: 10.3969/j.issn.1007-7294.2019.01.003.
|
[2] |
SHI Y, GAO X F, PAN G. Experimental and numerical investigation of the frequency-domain characteristics of impact load for AUV during water entry [J]. Ocean Engineering, 2020, 202: 107203. DOI: 10.1016/j.oceaneng.2020.107203.
|
[3] |
杨晓彬, 许国冬. 基于重叠网格法的飞机水上降落水动力砰击载荷研究 [J]. 振动与冲击, 2020, 39(2): 57–63. DOI: 10.13465/j.cnki.jvs.2020.02.009.
YANG X B, XU G D. Identification of hydrodynamic impact loads during the airplane ditching based on overset grid method [J]. Journal of Vibration and Shock, 2020, 39(2): 57–63. DOI: 10.13465/j.cnki.jvs.2020.02.009.
|
[4] |
秦洪德, 赵林岳, 申静. 入水冲击问题综述 [J]. 哈尔滨工业大学学报, 2011, 43(S1): 152–157.
QIN H D, ZHAO L Y, SHEN J. Review of water entry problem [J]. Journal of Harbin Institute of Technology, 2011, 43(S1): 152–157.
|
[5] |
WORTHINGTON A M. On impact with a liquid surface [J]. Proceedings of the Royal Society of London, 1883, 34(220/221/222/223): 217–230. DOI: 10.1098/rspl.1882.0035.
|
[6] |
VON KARMAN T. The impact on seaplane floats during landing: NACA-TN-321[R]. Washington: NACA, 1929.
|
[7] |
陈学农, 何友声. 平头物体三维带空泡入水的数值模拟 [J]. 力学学报, 1990, 22(2): 129–138.
CHEN X N, HE Y S. Numerical simulation of 3-D water entry of blunt cylinder with a ventilatedcavity [J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 129–138.
|
[8] |
ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies [J]. Journal of Fluid Mechanics, 1993, 246: 593–612. DOI: 10.1017/S002211209300028X.
|
[9] |
王永虎, 魏照宇. 楔形体入水时域解的复边界元数值分析 [J]. 爆炸与冲击, 2012, 32(1): 55–60. DOI: 10.11883/1001-1455(2012)01-0055-06.
WANG Y H, WEI Z Y. Numerical analysis for water entry of wedges based on a complex variable boundary element method [J]. Explosion and Shock Waves, 2012, 32(1): 55–60. DOI: 10.11883/1001-1455(2012)01-0055-06.
|
[10] |
马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟 [J]. 哈尔滨工业大学学报, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.
MA Q P, WEI Y J, WANG C, et al. Numerical simulation of high-speed water entry cavity of cylinders [J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.
|
[11] |
宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟 [J]. 北京理工大学学报, 2017, 37(7): 661–666. DOI: 10.15918/j.tbit1001-0645.2017.07.001.
SONG W C, WANG C, WEI Y J, et al. Numerical simulation of the flow field characteristics of low speed oblique water entry of revolution body [J]. Transactions of Beijing Institute of Technology, 2017, 37(7): 661–666. DOI: 10.15918/j.tbit1001-0645.2017.07.001.
|
[12] |
HOU Z, SUN T Z, QUAN X B, et al. Large eddy simulation and experimental investigation on the cavity dynamics and vortex evolution for oblique water entry of a cylinder [J]. Applied Ocean Research, 2018, 81: 76–92. DOI: 10.1016/j.apor.2018.10.008.
|
[13] |
张佳悦, 李达钦, 吴钦, 等. 航行体回收垂直入水空泡流场及水动力特性研究 [J]. 力学学报, 2019, 51(3): 803–812. DOI: 10.6052/0459-1879-18-364.
ZHANG J Y, LI D Q, WU Q, et al. Numerical investigation on cavity structures and hyrodynamics of the vehicle during vertical water-entry [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 803–812. DOI: 10.6052/0459-1879-18-364.
|
[14] |
SONG Z J, DUAN W Y, XU G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed [J]. Ocean Engineering, 2020, 211: 107574. DOI: 10.1016/j.oceaneng.2020.107574.
|
[15] |
魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究 [J]. 爆炸与冲击, 2021, 41(10): 112–123. DOI: 10.11883/bzycj-2020-0461.
WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 112–123. DOI: 10.11883/bzycj-2020-0461.
|
[16] |
ZHENG K Y, ZHAO X Z, YAN D M. Numerical simulation of water entry of two-dimensional structures with complex geometry using a CIP-based model [J]. Applied Ocean Research, 2021, 106: 102379. DOI: 10.1016/j.apor.2020.102379.
|
[17] |
HOWARD E A. Protective nose cap for torpedoes: US2889772 [P]. 1959-06-09.
|
[18] |
LI Y, ZONG Z, SUN T Z. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity [J]. Composite Structures, 2021, 255: 112883. DOI: 10.1016/j.compstruct.2020.112883.
|
[19] |
SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760. DOI: 10.1016/j.jfluidstructs.2019.102760.
|
[20] |
CHUANG S L. Experiments on flat-bottom slamming [J]. Journal of Ship Research, 1966, 10(1): 10–17. DOI: 10.5957/jsr.1966.10.1.10.
|
[21] |
陈震, 肖熙. 空气垫在平底结构入水砰击中作用的仿真分析 [J]. 上海交通大学学报, 2005, 39(5): 670–673. DOI: 10.3321/j.issn:1006-2467.2005.05.002.
CHEN Z, XIAO X. Simulation analysis on the role of air cushion in the slamming of a flat-bottom structure [J]. Journal of Shanghai Jiaotong University, 2005, 39(5): 670–673. DOI: 10.3321/j.issn:1006-2467.2005.05.002.
|
[22] |
潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究 [J]. 工程热物理学报, 2015, 36(8): 1691–1695.
PAN L, WANG H R, YAO E R, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder [J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691–1695.
|
[23] |
刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟 [J]. 工程热物理学报, 2019, 40(2): 300–305.
LIU H P, YU F P, HAN B, et al. Numerical simulation study on influence of top jet in object water entering impact [J]. Journal of Engineering Thermophysics, 2019, 40(2): 300–305.
|
[24] |
JIANG Y H, BAI T, GAO Y, et al. Water entry of a constraint posture body under different entry angles and ventilation rates [J]. Ocean Engineering, 2018, 153: 53–59. DOI: 10.1016/j.oceaneng.2018.01.091.
|
[25] |
赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析 [J]. 西北工业大学学报, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
ZHAO H R, SHI Y, PAN G. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle [J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
|
[26] |
SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows [J]. Computers & Fluids, 1995, 24(3): 227–238. DOI: 10.1016/0045-7930(94)00032-T.
|
[27] |
RODI W. Experience with two-layer models combining the k-ε model with a one-equation model near the wall [C] // 29th Aerospace Sciences Meeting. Reno, USA: AIAA, 1991: 216. DOI: 10.2514/6.1991-216.
|
[28] |
HALLER G. An objective definition of a vortex [J]. Journal of Fluid Mechanics, 2005, 525: 1–26. DOI: 10.1017/S0022112004002526.
|
[1] | JIAO Junjie, SHAN Feng, WANG Hancheng, QI Yanjie, PAN Xuchao, FANG Zhong, CHENG Yubo, HE Xiaolan, CI Shengjie, HE Yong. Determination of JWL equation of state based on the detonation product from underwater explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0203 |
[2] | LI Qinchao, YAO Chengbao, CHENG Shuai, ZHANG Dezhi, LIU Wenxiang. Application of the neural network equation of state in numerical simulation of intense blast wave[J]. Explosion And Shock Waves, 2023, 43(4): 044202. doi: 10.11883/bzycj-2022-0222 |
[3] | YE Chuanbing, DUAN Zhiwei, LI Xuhai, WANG Xi, PAN Hao, YU Yuying, HU Jianbo. Dynamic fragmentation of oxygen-free high-conducting copper under Mach stem loading[J]. Explosion And Shock Waves, 2023, 43(11): 113101. doi: 10.11883/bzycj-2023-0172 |
[4] | NIE Zhengyue, DING Yuqing, SONG Jiangjie, PENG Yong, LIN Yuliang, CHEN Rong. A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite[J]. Explosion And Shock Waves, 2022, 42(9): 091409. doi: 10.11883/bzycj-2021-0363 |
[5] | WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation[J]. Explosion And Shock Waves, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467 |
[6] | XU Songlin, SHAN Junfang, WANG Pengfei, HU Shisheng. Penetration performance of concrete under triaxial stress[J]. Explosion And Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034 |
[7] | Zhou Zheng-qing, Nie Jian-xin, Qin Jian-feng, Pei Hong-bo, Guo Xue-yong. Numerical simulations on effects of Al/O ratio on performance of aluminized explosives[J]. Explosion And Shock Waves, 2015, 35(4): 513-519. doi: 10.11883/1001-1455(2015)04-0513-07 |
[8] | Wei Xian-feng, Long Xin-ping, Han Yong. Studies on the state equation of the underwater detonation products for PBX-01 explosive[J]. Explosion And Shock Waves, 2015, 35(4): 599-602. doi: 10.11883/1001-1455(2015)04-0599-04 |
[9] | Lin Hua-ling, Ding Yu-qing, Tang Wen-hui. Factors influencing numerical simulation of concrete penetration[J]. Explosion And Shock Waves, 2013, 33(4): 425-429. doi: 10.11883/1001-1455(2013)04-0425-05 |
[10] | TangTie-gang, LiuCang-li. Ontheconstitutivemodelforoxygen-freehigh-conductivitycopper underhighstrain-ratetension[J]. Explosion And Shock Waves, 2013, 33(6): 581-586. doi: 10.11883/1001-1455(2013)06-0581-06 |
[11] | WU Hao, FANGQin, GONG Zi-ming. Semi-theoreticalanalysesforpenetrationdepthofrigidprojectiles withdifferentnosegeometriesintoconcrete(rock)target[J]. Explosion And Shock Waves, 2012, 32(6): 573-580. doi: 10.11883/1001-1455(2012)06-0573-08 |
[12] | WANG Yong-Gang, WANG Li-Li. Shock wave propagation characteristics in C30 concrete under plate impact loading[J]. Explosion And Shock Waves, 2010, 30(2): 119-124. doi: 10.11883/1001-1455(2010)02-0119-06 |
[13] | CHEN Jun, ZENG Dai-peng, SUN Cheng-wei, ZHANG Zhen-yu, TAND uo-wang. Equationsofstateforoverdriven-detonationproducts ofJB-9014explosive[J]. Explosion And Shock Waves, 2010, 30(6): 583-587. doi: 10.11883/1001-1455(2010)06-0583-05 |
[14] | ZHAO Yan-hong, LIU Hai-feng, ZHANG Guang-cai. EquationofstateofdetonationproductsforPBX9502explosive[J]. Explosion And Shock Waves, 2010, 30(6): 647-651. doi: 10.11883/1001-1455(2010)06-0647-05 |
[15] | WU Xu-tao, SUN Shan-fei, LI He-ping. Numerical simulation of SHPB tests for concrete by using HJC model[J]. Explosion And Shock Waves, 2009, 29(2): 137-142. doi: 10.11883/1001-1455(2009)02-0137-06 |
[16] | LI Xue-mei, WANG Xiao-song, WANG Peng-lai, LU Min, JIA Lu-feng. Spall of cylindrical copper by converging sliding detonation[J]. Explosion And Shock Waves, 2009, 29(2): 162-166. doi: 10.11883/1001-1455(2009)02-0162-05 |
[17] | FAN Chun-lei, HU Jin-wei, CHEN Da-nian, WANG Huan-ran, XIE Shu-gang. Measurement of transverse stress and determination of yield stress for OFHC copper subjected to planar shock[J]. Explosion And Shock Waves, 2008, 28(2): 110-115. doi: 10.11883/1001-1455(2008)02-0110-06 |
[18] | GUI Yu-lin, SUN Cheng-wei, LU Zhong-hua, LI Qiang, ZHANG Guang-sheng. The dynamic fracture and fragmentation of OFHC Cu under 1-D fast tension[J]. Explosion And Shock Waves, 2007, 27(1): 40-44. doi: 10.11883/1001-1455(2007)01-0040-05 |
[19] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[20] | ZHANG De-hai, ZHU Fu-sheng, XING Ji-bo. Application of beam-particle model to the prolem of concrete penetration[J]. Explosion And Shock Waves, 2005, 25(1): 85-89. doi: 10.11883/1001-1455(2005)01-0085-05 |
1. | 宋帅,杜闯,李艳艳. 超高性能混凝土HJC本构模型参数确定及应用. 爆炸与冲击. 2023(05): 57-69 . ![]() | |
2. | 娄乾星,陶铁军,田兴朝,谢财进. 基于HJC本构模型的石灰岩冲击破坏形态数值模拟方法研究. 爆破. 2022(04): 71-79 . ![]() |