Citation: | CHEN Nengxiang, ZHONG Wei, WANG Shufei, YANG Shanglin, TIAN Zhou, OU Xiang, HUANG Huaiwei, YAO Xiaohu. Study on geometric similarity law of steel frame under a far-field explosion load[J]. Explosion And Shock Waves, 2023, 43(1): 013101. doi: 10.11883/bzycj-2021-0498 |
[1] |
AL-THAIRY H. A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load [J]. International Journal of Impact Engineering, 2016, 94: 120–133. DOI: 10.1016/j.ijimpeng.2016.04.007.
|
[2] |
李忠献, 刘志侠, 丁阳. 爆炸荷载作用下钢结构的动力响应与破坏模式 [J]. 建筑结构学报, 2008, 29(4): 106–111. DOI: 10.14006/j.jzjgxb.2008.04.018.
LI Z X, LIU Z X, DING Y. Dynamic responses and failure modes of steel structures under blast loading [J]. Journal of Building Structures, 2008, 29(4): 106–111. DOI: 10.14006/j.jzjgxb.2008.04.018.
|
[3] |
丁阳, 汪明, 李忠献. 爆炸荷载作用下钢框架结构连续倒塌分析 [J]. 建筑结构学报, 2012, 33(2): 78–84. DOI: 10.14006/j.jzjgxb.2012.02.011.
DING Y, WANG M, LI Z X. Numerical analysis on damage and collapse process of steel frame structures under blast loads [J]. Journal of Building Structures, 2012, 33(2): 78–84. DOI: 10.14006/j.jzjgxb.2012.02.011.
|
[4] |
陈晔. 爆炸与次生火灾联合作用下钢结构损伤破坏及连续倒塌研究 [D]. 天津: 天津大学, 2016: 100–130.
CHEN Y. Damage evaluation and progressive collapse research of steel structures subjected to explosion and post-explosion fire [D]. Tianjin, China: Tianjin University, 2016: 100–130.
|
[5] |
张秀华, 张宇, 段忠东, 等. 爆炸荷载作用下钢柱的动力响应与影响因素分析 [J]. 防灾减灾工程学报, 2014, 34(1): 73–77, 84. DOI: 10.13409/j.cnki.jdpme.2014.01.011.
ZHANG X H, ZHANG Y, DUAN Z D, et al. Dynamic response and influence factor analysis of steel columns under blast loading [J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(1): 73–77, 84. DOI: 10.13409/j.cnki.jdpme.2014.01.011.
|
[6] |
张秀华, 吕晨旭, 李玉顺. 爆炸荷载作用下焊接工字钢梁的动力响应及破坏模式分析 [J]. 沈阳建筑大学学报(自然科学版), 2014, 30(3): 408–413. DOI: 10.11717/j.issn:2095-1922.2014.03.04.
ZHANG X H, LÜ C X, LI Y S. Analysis of dynamic responses and failure modes of welded I-shaped steel beams subject to blast loadings [J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(3): 408–413. DOI: 10.11717/j.issn:2095-1922.2014.03.04.
|
[7] |
JAMA H H, BAMBACH M R, NURICK G N, et al. Numerical modelling of square tubular steel beams subjected to transverse blast loads [J]. Thin-Walled Structures, 2009, 47(12): 1523–1534. DOI: 10.1016/j.tws.2009.06.004.
|
[8] |
NASSR A A, RAZAQPUR A G, TAIT M J, et al. Experimental performance of steel beams under blast loading [J]. Journal of Performance of Constructed Facilities, 2012, 26(5): 600–619. DOI: 10.1061/(ASCE)CF.1943-5509.0000289.
|
[9] |
钟渝楷, 姜正荣, 姚小虎, 等. 考虑几何偏差及重力影响的单层网壳冲击相似律研究 [J]. 振动与冲击, 2018, 37(3): 230–236. DOI: 10.13465/j.cnki.jvs.2018.03.036.
ZHONG Y K, JIANG Z R, YAO X H, et al. Impact comparability rule for single layer reticulated shells considering effects of geometric deviation and gravity [J]. Journal of Vibration and Shock, 2018, 37(3): 230–236. DOI: 10.13465/j.cnki.jvs.2018.03.036.
|
[10] |
FU S Q, GAO X N, CHEN X. The similarity law and its verification of cylindrical lattice shell model under internal explosion [J]. International Journal of Impact Engineering, 2018, 122: 38–49. DOI: 10.1016/j.ijimpeng.2018.08.010.
|
[11] |
谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005: 9–18.
TAN Q M. Dimensional analysis [M]. Hefei: China University of Science and Technology Press, 2005: 9–18.
|
[12] |
KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin, Germany: Springer, 1985: 94–106. DOI: 10.1007/978-3-642-86682-1.
|
[13] |
DINU F, MARGINEAN I, DUBINA D, et al. Experimental testing and numerical modeling of steel frames under close-in detonations [J]. Procedia Engineering, 2017, 210: 377–385. DOI: 10.1016/j.proeng.2017.11.091.
|
[14] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
|
[15] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[16] |
Department of the Army. Fundamentals of protective design for conventional weapons: TM-5-855-1 [S]. Washington, USA: Department of the Army, 1986.
|
[17] |
崔子鑫, 李海超, 庞彧, 等. Conwep算法和压力时程曲线荷载施加法在爆炸毁伤分析中的适用性 [J]. 军事交通学院学报, 2021, 23(1): 88–94. DOI: 10.16807/j.cnki.12-1372/e.2021.01.018.
CUI Z X, LI H C, PANG Y, et al. Applicability of Conwep algorithm and pressure-time curve load application method in explosion damage analysis [J]. Journal of Military Transportation University, 2021, 23(1): 88–94. DOI: 10.16807/j.cnki.12-1372/e.2021.01.018.
|
[18] |
甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
|
[19] |
陈绍蕃, 顾强. 钢结构基础 [M]. 2版. 北京: 中国建筑工业出版社, 2007: 318–330.
|
[20] |
DUSENBERRY D O. Handbook for blast-resistant design of buildings [M]. Hoboken, NJ, USA: Wiley, 2010: 119–129.
|
[21] |
林莉, 黄博, 肖新科, 等. Q355B钢动态材料性能研究 [J]. 振动与冲击, 2020, 39(18): 231–237. DOI: 10.13465/j.cnki.jvs.2020.18.031.
LIN L, HUANG B, XIAO X K, et al. Behavior of dynamic material Q355B steel based on the Johnson-Cook model [J]. Journal of Vibration and Shock, 2020, 39(18): 231–237. DOI: 10.13465/j.cnki.jvs.2020.18.031.
|
[22] |
Department of Defense. DoD minimum antiterrorism standards for buildings: UFC 4-010-01 [S]. Washington, USA: Department of Defense, 2012: 24–25.
|
[23] |
Department of Defense. Component explosive damage assessment workbook (CEDAW): USACE ECB 2005-13 [S]. Washington, USA: Department of Defense, 2005: 26–37.
|
[24] |
Pourbehi M S. Design of blast-resistant buildings in petrochemical facilities [M]. The United States: Malek Ashtat Press, 1999: 5–22.
|
[25] |
同济大学, 天津大学. 民用建筑防爆设计标准: T/CECS 736—2020 [S]. 北京: 中国建筑工业出版社, 2020.
Tongji University, Tianjin University. Standard for blast protection design of civil buildings: T/CECS 736—2020 [S]. Beijing: China Architecture & Building Press, 2020.
|
[26] |
肖绍添. 爆炸荷载作用下钢管混凝土框架结构损伤与倒塌数值分析 [D]. 广州: 广州大学, 2019: 64.
XIAO S T. Numerical analysis of damage and collapse of concrete-filled steel tube frame structure under blast load [D]. Guangzhou: Guangzhou University, 2019: 64.
|
[27] |
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.
Ministry of Housing and Urban-Rural Development of the People s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for seismic design of buildings: GB 50011—2010 [S]. Beijing: China Architecture & Building Press, 2010.
|
[28] |
COUNCIL A T, ROJAHN C, SHAPIRO D, et al. NEHRP guidelines for the seismic rehabilitation of buildings[Z]. Washington: Federal Emergency Management Agency, 1997: 2–12.
|
[29] |
WEN Y K, KANG Y J. Minimum building life-cycle cost design criteria: applications [J]. Journal of Structural Engineering, 2001, 127(3): 338–346. DOI: 10.1061/(asce)0733-9445(2001)127:3(338).
|
[1] | DU Chuang, ZHANG Jiangpeng, ZHUANG Tieshuan, WU Jun, XU Wenxuan, ZHANG Tao. Pressure distribution and dynamic response of a submerged tunnel under explosion loading[J]. Explosion And Shock Waves, 2024, 44(5): 053202. doi: 10.11883/bzycj-2023-0255 |
[2] | WEI Jianhui, LI Xu, HUANG Wei, XU Hongjian, FANG Bopeng. Dynamic response and failure of sandwich beams with graded metal foam core under high-velocity impact[J]. Explosion And Shock Waves, 2023, 43(5): 053301. doi: 10.11883/bzycj-2022-0156 |
[3] | ZHAO Haonan, FANG Hongyuan, ZHAO Xiaohua, WANG Gaohui. Analysis on the blast resistance of polymer composite slabs under contact explosions[J]. Explosion And Shock Waves, 2023, 43(5): 052201. doi: 10.11883/bzycj-2022-0161 |
[4] | ZOU Guangping, LIANG Zheng, WU Songyang, CHANG Zhongliang. Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading[J]. Explosion And Shock Waves, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254 |
[5] | HU Chaolei, SUN Hailiang, WANG Zhipeng, BAO Zhaopeng, CUI Tianning, QIN Qinghua. Dynamic response and mechanism of mitigation and energy absorption of sandwich beams with a mechanical metamaterial core of negative Poisson’s ratio subjected to high-velocity impact of granular slug[J]. Explosion And Shock Waves, 2022, 42(12): 123101. doi: 10.11883/bzycj-2022-0045 |
[6] | LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495 |
[7] | YANG Leifeng, CHANG Xinzhe, XU Fei, WANG Shuai, LIU Xiaochuan, XI Xulong, LI Xiaocheng. Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact[J]. Explosion And Shock Waves, 2022, 42(5): 053205. doi: 10.11883/bzycj-2021-0452 |
[8] | ZHU Ling, GUO Kailing, YU Tongxi, LI Yinggang. Dynamic responses of metal foam sandwich beams to repeated impacts[J]. Explosion And Shock Waves, 2021, 41(7): 073101. doi: 10.11883/bzycj-2020-0198 |
[9] | ZHANG Pengzhou, DONG Qi, YANG Sha. Influence of blast loading parameters on elastic dynamic response of an infinite-length cylindrical shell[J]. Explosion And Shock Waves, 2021, 41(6): 063101. doi: 10.11883/bzycj-2020-0269 |
[10] | ZHANG Peiwen, LI Shiqiang, WANG Zhihua, ZHAO Longmao. Dynamic response of sandwich beam with foldable core under blast loading[J]. Explosion And Shock Waves, 2018, 38(1): 140-147. doi: 10.11883/bzycj-2017-0017 |
[11] | Zhang Yadong, A Shuailei, Zou Bin, Yu Wenhua. Shock wave loads on the blast door in straight tunnel[J]. Explosion And Shock Waves, 2017, 37(6): 1057-1064. doi: 10.11883/1001-1455(2017)06-1057-08 |
[12] | Cui Yun-xiao, Hu Yong-le, Wang Chun-ming, Hu Hao, Chen Peng-wan. Dynamic response of multi-layer steel cylinder under internal intense blast loading[J]. Explosion And Shock Waves, 2015, 35(6): 820-824. doi: 10.11883/1001-1455(2015)06-0820-05 |
[13] | Wang Shi-ping, Guo Jun, Zhang Zhong-yu, Chen Hai-long, Sun Feng. Dynamic response of a cylindrical shell under bubble jet loading[J]. Explosion And Shock Waves, 2013, 33(4): 337-343. doi: 10.11883/1001-1455(2013)04-0337-07 |
[14] | HouJun-liang, JiangJian-wei, MenJian-bing, WangShu-you. Dynamicresponseofthinplatewithholesunderblastloading[J]. Explosion And Shock Waves, 2013, 33(6): 662-666. doi: 10.11883/1001-1455(2013)06-0662-05 |
[15] | CAO Yuan, JIN Xian-long, LI Zheng. Dynamicanalysisofflexiblecontainersunderimpact[J]. Explosion And Shock Waves, 2011, 31(5): 469-474. doi: 10.11883/1001-1455(2011)05-0469-06 |
[16] | SHEN Yan-ming, CHEN Jian-qiang. Numericallysimulatingverificationofthecomparabilityrule onhypervelocityimpact[J]. Explosion And Shock Waves, 2011, 31(4): 343-348. doi: 10.11883/1001-1455(2011)04-0343-06 |
[17] | QIN Jian, ZHANG Zhen-hua. Ascalingmethodforpredictingdynamicresponsesofstiffenedplates madeofmaterialsdifferentfromexperimentalmodels[J]. Explosion And Shock Waves, 2010, 30(5): 511-516. doi: 10.11883/1001-1455(2010)05-0511-06 |
[18] | LI Jin-he, ZHAO Ji-bo, TAN Duo-wang, WANG Yan-ping, ZHANG Yuan-ping. Underwater shock wave performances of explosives[J]. Explosion And Shock Waves, 2009, 29(2): 172-176. doi: 10.11883/1001-1455(2009)02-0172-05 |
[19] | CHENG Su-qiu, FAN Bao-shun, XUE Fei, WANG Wei. Dynamical response measurement of a cabin model subjected to noncontact underwater explosion[J]. Explosion And Shock Waves, 2008, 28(4): 360-366. doi: 10.1188/1001-1455(2008)04-0360-07 |
[20] | ZHANG Zhen-hua, WANG Cheng, HUANG Yu-ying, ZHU Xi, LI Zhen-huan. Experiment research of the dynamic response of fluid cabin in the bottom of warship subjected to underwater explosion[J]. Explosion And Shock Waves, 2007, 27(5): 431-437. doi: 10.11883/1001-1455(2007)05-0431-07 |