Citation: | YANG Shigang, CAI Jiongwei, YANG Ya, SUN Wensheng, MEN Jingmin. Disaster effects of combustible gas explosion in an urban shallow-buried pipe trench (Ⅱ): influencing factor analysis and consequence evaluation[J]. Explosion And Shock Waves, 2023, 43(1): 015401. doi: 10.11883/bzycj-2021-0503 |
[1] |
YU G D, WANG Y L, ZHENG L, et al. Comprehensive study on the catastrophic explosion of ammonium nitrate stored in the warehouse of Beirut port [J]. Process Safety and Environmental Protection, 2021, 152: 201–219. DOI: 10.1016/j.psep.2021.05.030.
|
[2] |
ASSAEL M J, KAKOSIMOS K E. Fires, explosions, and toxic gas dispersions: effects calculation and risk analysis [M]. Boca Raton, USA: CRC Press, 2010.
|
[3] |
WANG K, SHI T T, HE Y R, et al. Case analysis and CFD numerical study on gas explosion and damage processing caused by aging urban subsurface pipeline failures [J]. Engineering Failure Analysis, 2019, 97: 201–219. DOI: 10.1016/j.engfailanal.2019.01.052.
|
[4] |
ZHANG Q T, ZHOU G, HU Y Y, et al. Risk evaluation and analysis of a gas tank explosion based on a vapor cloud explosion model: a case study [J]. Engineering Failure Analysis, 2019, 101: 22–35. DOI: 10.1016/j.engfailanal.2019.03.003.
|
[5] |
Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. USA: Department of Defense, 2008.
|
[6] |
RUSSO P, DE MARCO A, PARISI F. Failure of reinforced concrete and tuff stone masonry buildings as consequence of hydrogen pipeline explosions [J]. International Journal of Hydrogen Energy, 2019, 44(38): 21067–21079. DOI: 10.1016/j.ijhydene.2019.01.225.
|
[7] |
LEES F. Leesʼ loss prevention in the process industries: hazard identification, assessment and control [M]. 4th ed. Amsterdam, USA: Butterworth-Heinemann, 2012.
|
[8] |
张云明. 气体爆炸原理与防治技术 [M]. 北京: 化学工业出版社, 2018.
ZHANG Y M. Gas explosion principle and prevention technology [M]. Beijing, China: Chemical Industry Press, 2018.
|
[9] |
MA G W, SHI H J, SHU D W. P-I diagram method for combined failure modes of rigid-plastic beams [J]. International Journal of Impact Engineering, 2007, 34(6): 1081–1094. DOI: 10.1016/j.ijimpeng.2006.05.001.
|
[10] |
汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012: 103–118.
WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha, Hunan, China: National University of Defense Technology, 2012: 103–118.
|
[11] |
American Institute of Chemical Engineers. Guidelines for vapor cloud explosion, pressure vessel burst, BLEVE, and flash fire hazards [M]. 2nd ed. New York, USA: Wiley, 2010: 86–95.
|
[12] |
李峰. 城市地下交通空间爆炸人员及结构毁伤研究 [D]. 西安: 长安大学, 2014: 98–125.
LI F. Study on personal injury and structural damage due to urban traffic underground explosion [D]. Xi’an, Shaanxi, China: Chang’an University, 2014: 98–125.
|
[13] |
SONG X Z, ZHANG J, ZHANG D, et al. Dispersion and explosion characteristics of unconfined detonable aerosol and its consequence analysis to humans and buildings [J]. Process Safety and Environmental Protection, 2021, 152: 66–82. DOI: 10.1016/j.psep.2021.05.041.
|
[14] |
PRUGH R W. The effects of explosive blast on structures and personnel [J]. Process Safety Progress, 1999, 18(1): 5–16. DOI: 10.1002/prs.680180104.
|
[15] |
Center for Chemical Process Safety. Guidelines for consequence analysis of chemical releases [M]. 2nd ed. New York, USA: John Wiley & Sons, 2010: 50–62.
|
[16] |
ALONSO F D, FERRADÁS E G, SÁNCHEZ T D J J, et al. Consequence analysis to determine the damage to humans from vapour cloud explosions using characteristic curves [J]. Journal of Hazardous Materials, 2008, 150(1): 146–152. DOI: 10.1016/j.jhazmat.2007.04.089.
|
[17] |
中国石油化工集团公司总图技术中心站. 钢筋混凝土矩形排水沟及盖板: SHT102—2006 [S]. 2006.
Genral Layout Technology Center Station of China. Petrochemical Corporation Reinforced concrete rectangular drainage trench and cover plate: SHT102—2006 [S]. 2006.
|
[18] |
杨石刚, 蔡炯炜, 杨亚, 等. 城市地下浅埋管沟可燃气体爆炸的灾害效应 (Ⅰ): 冲击波在地面的传播[J]. 爆炸与冲击, 2022, 42(10): 105101. DOI: 10.11883/bzycj-2021-0502
YANG S G, CAI J W, YANG Y, et al. Disaster effects of combustible gas explosion in an urban shallow-buried pipe trench (Ⅰ): shock wave propagation on the ground [J]. Explosion And Shock Waves, 2022, 42(10): 105101.DOI: 10.11883/bzycj-2021-0502
|
[19] |
国家安全生产监督管理总局. 化工企业定量风险评价导则: AQ/T3046—2013 [S]. 北京: 煤炭工业出版社, 2013.
State Administration of Work Safety. Guidelines for quantitative risk assessment of chemical enterprises: AQ/T3046—2013 [S]. Beijing, China: Coal Industry Press, 2013.
|
[1] | QIAN Haimin, PAN Yahao, ZONG Zhouhong, GAN Lu, WU Xi, SUN Miaomiao. Experimental study on dynamic response of underground utility tunnel under ground explosion[J]. Explosion And Shock Waves, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400 |
[2] | LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495 |
[3] | ZHOU Zhongxin, JIN Fengnian, YUAN Xiaojun, CHEN Hailong, ZHOU Jiannan, XU Ying, KONG Xinli. Dynamic response of underground arch structure under lateral point blast loads[J]. Explosion And Shock Waves, 2018, 38(3): 639-646. doi: 10.11883/bzycj-2016-0295 |
[4] | Li Shiqiang, Li Xin, Wu Guiying, Wang Zhihua, Zhao Longmao. Dynamic response of functionally graded honeycomb sandwich plates under blast loading[J]. Explosion And Shock Waves, 2016, 36(3): 333-339. doi: 10.11883/1001-1455(2016)03-0333-07 |
[5] | Sun Hui-xiang, Xu Jin-yu, Zhu Guo-fu, Wen Ke-xu. Dynamic interaction between surrounding rock and underground structure subjected to blast loading[J]. Explosion And Shock Waves, 2013, 33(5): 519-524. doi: 10.11883/1001-1455(2013)05-0519-06 |
[6] | TIAN Yu-bin, LI Zhao, ZHANG Chun-wei. Dynamicresponseofreinforcedmasonrystructureunderblastload[J]. Explosion And Shock Waves, 2012, 32(6): 658-662. doi: 10.11883/1001-1455(2012)06-0658-05 |
[7] | ZHANG Xu-hong, WANG Zhi-hua, ZHAO Long-mao. Dynamic responses of sandwich plates with aluminum honeycomb cores subjected to blast loading[J]. Explosion And Shock Waves, 2009, 29(4): 356-360. doi: 10.11883/1001-1455(2009)04-0356-05 |
[8] | DU Xiu-li, LIAO Wei-zhang, TIAN Zhi-min, LI Liang. Dynamic response analysis of underground structures under explosion-induced loads[J]. Explosion And Shock Waves, 2006, 26(5): 474-480. doi: 10.11883/1001-1455(2006)05-0474-07 |
1. | 蔡静静,徐轩,陈占扬,杨军. 孔内空气间隔对有/无金属罩聚能装药定向侵彻效果的影响. 含能材料. 2024(07): 726-736 . ![]() | |
2. | 何志杰,王猛,赵康,胡坤伦. 起爆环半径对三层串联药型罩成型影响数值模拟. 火工品. 2021(05): 24-27 . ![]() | |
3. | 李瑞,李伟兵,王晓鸣,李文彬. 三点起爆控制参数对尾翼爆炸成型弹丸成型的影响. 爆炸与冲击. 2018(03): 501-508 . ![]() | |
4. | 王俊晓,向红军,吕庆敖,张华祥. 电磁轨道炮超高速弹丸软回收技术需求及研究现状分析. 飞航导弹. 2018(11): 6-10 . ![]() | |
5. | 沈慧铭,李伟兵,王晓鸣,李文彬,郑宇,董晓亮. 多点起爆方式对EFP侵彻能力增益的研究. 弹道学报. 2017(03): 49-55 . ![]() | |
6. | 张孝中,赵太勇,陈智刚,郭光全,李建飞. 尾翼型EFP形成的数值模拟研究. 弹箭与制导学报. 2017(04): 47-50 . ![]() | |
7. | 龙源,刘健峰,纪冲,钟明寿,刘影,周辉. 多点起爆对双层药型罩爆炸成型弹丸成型及侵彻特性的数值模拟研究. 兵工学报. 2016(12): 2226-2234 . ![]() | |
8. | 刘健峰,龙源,纪冲,许道峰,钟明寿,赵华兵. 起爆环半径对双层药型罩爆炸成形弹丸成形和侵彻特性的影响. 兵工学报. 2016(S2): 203-209 . ![]() | |
9. | 张健,程春,相升海,李然,赵爽,韩继龙. 基于量纲分析法的EFP速度计算模型. 弹箭与制导学报. 2016(03): 31-34 . ![]() | |
10. | 李瑞,李伟兵,王晓鸣,李文彬. 三点起爆同步误差对尾翼EFP成型性能的影响. 含能材料. 2016(11): 1041-1047 . ![]() | |
11. | 刘伟,李素丽. TC4钛合金微型液滴成形热应力分析. 兵器材料科学与工程. 2014(04): 67-70 . ![]() | |
12. | 郭帅,李小军,于小洁,陈智刚,裴思行,付建平. 双层药型罩内罩开槽对EFP形成尾翼的影响. 爆破器材. 2014(06): 11-15 . ![]() | |
13. | 刘建青,顾文彬,徐浩铭,陆鸣,武双章. 多点起爆装药结构参数对尾翼EFP成型的影响. 含能材料. 2014(05): 594-599 . ![]() |