DUAN Bao-fu, ZHANG Meng, LI Jun-meng. ABPneuralnetworkmodelforforecastingofvibrationparametersfromhole-by-holedetonation[J]. Explosion And Shock Waves, 2010, 30(4): 401-406. doi: 10.11883/1001-1455(2010)04-0401-06
Citation: HU Li, LIU Longfei, WANG Xu, YANG Zhicheng, WU Zhiqiang. Effects of recrystallized structures on adiabatic shear behaviors of TA2 pure titanium[J]. Explosion And Shock Waves, 2023, 43(1): 013104. doi: 10.11883/bzycj-2021-0529

Effects of recrystallized structures on adiabatic shear behaviors of TA2 pure titanium

doi: 10.11883/bzycj-2021-0529
  • Received Date: 2021-12-27
  • Rev Recd Date: 2022-05-15
  • Available Online: 2022-06-06
  • Publish Date: 2023-01-05
  • Adiabatic shear is a common form of deformation and failure of materials under high-speed impact loading. It generally exists in high-speed deformation processes such as high-speed impact, stamping forming, projectile penetration, high-speed cutting, and explosive crushing. A TA2 pure titanium plate with a total deformation of 70% was obtained by multi-pass large strain cold rolling on a two-high mill. By heating cold rolled TA2 pure titanium plates at 500 ℃ and annealing at varying holding times, titanium plates with different recrystallization structures were produced. Based on a hat-shaped specimen and a limit-ring deformation control approach, dynamic impact freezing experiments were carried out on the specimens with different recrystallized structures by using a split Hopkinson pressure bar. The microstructure changes of the specimens before and after impact were characterized by using an optical microscope and a scanning electron microscope. The effects of recrystallized structures on adiabatic shear behaviors of TA2 pure titanium were studied, showing that with the increase of annealing holding time, the proportion of recrystallized grains increases gradually, and the grain distribution changes from dispersion to local aggregation. Under the same strain and strain rate, adiabatic shear bands were observed in all specimens. The specimens with high proportion of recrystallized grains are more likely to induce crack nucleation and propagation in adiabatic shear bands. The changes of recrystallization structures and geometric necessary dislocations before and after deformation were compared. Combined with the analysis of the overall temperature rise in the shear area, the recrystallized grain as the material softening zone can induce the formation of shear band. The adiabatic temperature rise effect mainly occurs in the later stage of the development of shear band, which promotes the secondary recrystallization of materials in the shear band, improves the toughness of materials in the shear band and delays the formation of shear cracks.
  • [1]
    BAI H Q, ZHONG L S, KANG L, et al. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy [J]. Journal of Alloys and Compounds, 2021, 882: 160645. DOI: 10.1016/J.JALLCOM.2021.160645.
    [2]
    SUN J L, TRIMBY P W, YAN F K, et al. Shear banding in commercial pure titanium deformed by dynamic compression [J]. Acta Materialia, 2014, 79: 47–58. DOI: 10.1016/j.actamat.2014.07.011.
    [3]
    LEE W S, LIN C F, CHEN T H, et al. Correlation of dynamic impact properties with adiabatic shear banding behaviour in Ti-15Mo-5Zr-3Al alloy [J]. Materials Science and Engineering: A, 2008, 475(1/2): 172–184. DOI: 10.1016/j.msea.2007.05.027.
    [4]
    TERADA D, INOUE S, TSUJI N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process [J]. Journal of Materials Science, 2007, 42(5): 1673–1681. DOI: 10.1007/s10853-006-0909-7.
    [5]
    TRESCA H M. On further applications of the flow of solids [J]. Journal of the Franklin Institute, 1878, 106(6): 396–404. DOI: 10.1016/0016-0032(78)90047-9.
    [6]
    MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251–283. DOI: 10.1016/0022-5096(88)90012-9.
    [7]
    汤铁钢, 胡海波, 李庆忠, 等. 外部爆轰加载过程中金属圆管断裂实验研究 [J]. 爆炸与冲击, 2002, 22(4): 333–337.

    TANG T G, HU H B, LI Q Z, et al. Studies on the fracture of steel cycinder under external explosive loading [J]. Explosion and Shock Waves, 2002, 22(4): 333–337.
    [8]
    DAI L H, LIU L F, BAI Y L. Effect of particle size on the formation of adiabatic shear band in particle reinforced metal matrix composites [J]. Materials Letters, 2004, 58(11): 1773–1776. DOI: 10.1016/j.matlet.2003.10.050.
    [9]
    XU Y B, BAI Y L, MEYERS M A. Deformation, phase transformation and recrystallization in the shear bands induced by high-strain rate loading in titanium and its alloys [J]. Journal of Materials Sciences and Technology, 2006, 22(6): 737–746. DOI: 10.3321/j.issn:1005-0302.2006.06.002.
    [10]
    DAI L H, LIU L F, BAI Y L. Formation of adiabatic shear band in metal matrix composites [J]. International Journal of Solids and Structures, 2004, 41(22/23): 5979–5993. DOI: 10.1016/j.ijsolstr.2004.05.023.
    [11]
    DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. 2nd ed. Amsterdam, the Netherlands: Elsevier, 2012.
    [12]
    杨涛, 刘龙飞, 杨智程, 等. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响 [J]. 力学学报, 2021, 53(3): 813–822. DOI: 10.6052/0459-1879-20-433.

    YANG T, LIU L F, YANG Z C, et al. Effect of surface roughness on the formation of shear band in Ti-6Al-4V alloy cylindrical shell [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813–822. DOI: 10.6052/0459-1879-20-433.
    [13]
    ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363.
    [14]
    HARTLEY K A, DUFFY J, HAWLEY R H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(3): 283–301. DOI: 10.1016/0022-5096(87)90009-3.
    [15]
    DUFFY J, CHI Y C. On the measurement of local strain and temperature during the formation of adiabatic shear bands [J]. Materials Science and Engineering: A, 1992, 157(2): 195–210. DOI: 10.1016/0921-5093(92)90026-W.
    [16]
    ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates: Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. DOI: 10.1016/0022-5096(96)00003-8.
    [17]
    GUO Y Z, LI Y L. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. DOI: 10.1016/S0894-9166(12)60027-5.
    [18]
    付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004.

    FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004.
    [19]
    GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. DOI: 10.1103/PhysRevLett.122.015503.
    [20]
    ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. DOI: 10.1016/j.mechmat.2019.103102.
    [21]
    GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. DOI: 10.1016/j.jmps.2019.103811.
    [22]
    RITTEL D, WANG Z G, MERZER M. Adiabatic shear failure and dynamic stored energy of cold work [J]. Physical Review Letters, 2006, 96(7): 075502. DOI: 10.1103/PhysRevLett.96.075502.
    [23]
    RITTEL D, LANDAU P, VENKERT A. Dynamic recrystallization as a potential cause for adiabatic shear failure [J]. Physical Review Letters, 2008, 101(16): 165501. DOI: 10.1103/PhysRevLett.101.165501.
    [24]
    OSOVSKI S, RITTEL D, LANDAU P, et al. Microstructural effects on adiabatic shear band formation [J]. Scripta Materialia, 2012, 66(1): 9–12. DOI: 10.1016/j.scriptamat.2011.09.014.
    [25]
    OSOVSKI S, RITTEL D, VENKERT A. The respective influence of microstructural and thermal softening on adiabatic shear localization [J]. Mechanics of Materials, 2013, 56: 11–22. DOI: 10.1016/j.mechmat.2012.09.008.
    [26]
    RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1/2): 177–185. DOI: 10.1007/s10704-010-9475-8.
    [27]
    周刚毅, 董新龙, 付应乾. 动态帽型剪切试样分析及实验验证 [J]. 兵工学报, 2017, 38(12): 2455–2462. DOI: 10.3969/j.issn.1000-1093.2017.12.020.

    ZHOU G Y, DONG X L, FU Y Q. Analysis and experimental verification of dynamic shear test for hat-shaped specimen [J]. Acta Armamentarii, 2017, 38(12): 2455–2462. DOI: 10.3969/j.issn.1000-1093.2017.12.020.
    [28]
    XUE Q, MEYERS M A, NESTERENKO V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy [J]. Acta Materialia, 2002, 50(3): 575–596. DOI: 10.1016/s1359-6454(01)00356-1.
    [29]
    HE J Y, MA Y, YAN D S, et al. Improving ductility by increasing fraction of interfacial zone in low C steel/304 SS laminates [J]. Materials Science and Engineering: A, 2018, 726: 288–297. DOI: 10.1016/j.msea.2018.04.102.
  • Cited by

    Periodical cited type(19)

    1. 陈梓薇,王仲琦,曾令辉. 基于BP神经网络的爆炸用激波管峰值压力预测方法. 爆炸与冲击. 2024(05): 132-141 . 本站查看
    2. 康明月,王成,孙鸿雁,李作麟,罗斌. 基于改进的WOA-LSSVM樱桃番茄内部品质检测方法研究. 光谱学与光谱分析. 2023(11): 3541-3550 .
    3. 冷智高,李祥龙,程明,宋春辉,陶子豪. BP神经网络在爆破振动中的研究与应用. 有色金属(矿山部分). 2019(06): 9-12 .
    4. 杨伟,李国平,李夕兵,张钦礼. 爆破荷载下全尾砂胶结充填体破坏规律及防治措施. 矿业研究与开发. 2018(03): 113-118 .
    5. 刘志刚,曹安业,井广成. 煤体卸压爆破参数正交试验优化设计研究. 采矿与安全工程学报. 2018(05): 931-939 .
    6. 李玉能,马建军,池恩安,陈永麟. 基于BP神经网络的高含水岩石爆破震动参数预报. 爆破. 2017(02): 68-73 .
    7. 杨风波,马大为,薛新宇,崔龙飞. 新型路基同心筒热冲击机理与热环境影响因子. 爆炸与冲击. 2016(02): 153-160 . 本站查看
    8. 李新,曹鹏飞. 基于BP神经网络与经验公式法的地下洞室爆破振速预测及对比研究. 甘肃水利水电技术. 2016(02): 12-15 .
    9. 郭英杰,璩世杰,胡光球. 基于BP神经网络的露天采场爆破振速预测. 现代矿业. 2016(01): 13-16 .
    10. 马威,马飞,郭荣,耿晓光. GA-BP网络在凿岩防卡阀推进压力预测中的应用. 工矿自动化. 2016(07): 44-50 .
    11. 高富强,侯爱军,杨小林. 爆破震动速度峰值预测模型的比较和讨论. 爆破. 2015(02): 17-21 .
    12. 王涛,张建华. 基于BP神经网络的微差爆破震动预测研究. 爆破. 2015(02): 140-143 .
    13. 仲健林,任杰,蔡德咏,胡建国. 自适应底座附加冲击载荷的积分表达和影响因子. 爆炸与冲击. 2015(05): 668-674 . 本站查看
    14. 李万,张志华,李华,李大伟. 水下爆炸载荷作用下水下目标结构的可靠性研究. 高压物理学报. 2014(03): 324-330 .
    15. 王先义,黄华东,王小委,赵欢,陈桦深,李连超. 基于LM-BPNN方法的爆破震动灾害预测模型. 科学技术与工程. 2014(35): 181-185 .
    16. 刘庆,张光权,吴春平,陶铁军. 基于BP神经网络模型的爆破飞石最大飞散距离预测研究. 爆破. 2013(01): 114-118 .
    17. 罗学东,范新宇,代贞伟,梅年峰,闫苏涛. BP神经网络模型在露天矿爆破振动参数预测中的应用及修正. 中南大学学报(自然科学版). 2013(12): 5019-5024 .
    18. 刘博,史秀志,黄宣东,武永猛,黄丹,罗佳. 基于拟牛顿法的QN-BP预测爆破振动峰值速度. 中国有色金属学报. 2013(05): 1427-1433 .
    19. 马立,徐次雄,欧阳航空,荣伟彬,孙立宁. 基于动量BP神经网络激光陀螺调腔检测方法. 中国激光. 2012(04): 37-44 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (470) PDF downloads(65) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return