Citation: | HU Li, LIU Longfei, WANG Xu, YANG Zhicheng, WU Zhiqiang. Effects of recrystallized structures on adiabatic shear behaviors of TA2 pure titanium[J]. Explosion And Shock Waves, 2023, 43(1): 013104. doi: 10.11883/bzycj-2021-0529 |
[1] |
BAI H Q, ZHONG L S, KANG L, et al. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy [J]. Journal of Alloys and Compounds, 2021, 882: 160645. DOI: 10.1016/J.JALLCOM.2021.160645.
|
[2] |
SUN J L, TRIMBY P W, YAN F K, et al. Shear banding in commercial pure titanium deformed by dynamic compression [J]. Acta Materialia, 2014, 79: 47–58. DOI: 10.1016/j.actamat.2014.07.011.
|
[3] |
LEE W S, LIN C F, CHEN T H, et al. Correlation of dynamic impact properties with adiabatic shear banding behaviour in Ti-15Mo-5Zr-3Al alloy [J]. Materials Science and Engineering: A, 2008, 475(1/2): 172–184. DOI: 10.1016/j.msea.2007.05.027.
|
[4] |
TERADA D, INOUE S, TSUJI N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process [J]. Journal of Materials Science, 2007, 42(5): 1673–1681. DOI: 10.1007/s10853-006-0909-7.
|
[5] |
TRESCA H M. On further applications of the flow of solids [J]. Journal of the Franklin Institute, 1878, 106(6): 396–404. DOI: 10.1016/0016-0032(78)90047-9.
|
[6] |
MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251–283. DOI: 10.1016/0022-5096(88)90012-9.
|
[7] |
汤铁钢, 胡海波, 李庆忠, 等. 外部爆轰加载过程中金属圆管断裂实验研究 [J]. 爆炸与冲击, 2002, 22(4): 333–337.
TANG T G, HU H B, LI Q Z, et al. Studies on the fracture of steel cycinder under external explosive loading [J]. Explosion and Shock Waves, 2002, 22(4): 333–337.
|
[8] |
DAI L H, LIU L F, BAI Y L. Effect of particle size on the formation of adiabatic shear band in particle reinforced metal matrix composites [J]. Materials Letters, 2004, 58(11): 1773–1776. DOI: 10.1016/j.matlet.2003.10.050.
|
[9] |
XU Y B, BAI Y L, MEYERS M A. Deformation, phase transformation and recrystallization in the shear bands induced by high-strain rate loading in titanium and its alloys [J]. Journal of Materials Sciences and Technology, 2006, 22(6): 737–746. DOI: 10.3321/j.issn:1005-0302.2006.06.002.
|
[10] |
DAI L H, LIU L F, BAI Y L. Formation of adiabatic shear band in metal matrix composites [J]. International Journal of Solids and Structures, 2004, 41(22/23): 5979–5993. DOI: 10.1016/j.ijsolstr.2004.05.023.
|
[11] |
DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. 2nd ed. Amsterdam, the Netherlands: Elsevier, 2012.
|
[12] |
杨涛, 刘龙飞, 杨智程, 等. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响 [J]. 力学学报, 2021, 53(3): 813–822. DOI: 10.6052/0459-1879-20-433.
YANG T, LIU L F, YANG Z C, et al. Effect of surface roughness on the formation of shear band in Ti-6Al-4V alloy cylindrical shell [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813–822. DOI: 10.6052/0459-1879-20-433.
|
[13] |
ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363.
|
[14] |
HARTLEY K A, DUFFY J, HAWLEY R H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(3): 283–301. DOI: 10.1016/0022-5096(87)90009-3.
|
[15] |
DUFFY J, CHI Y C. On the measurement of local strain and temperature during the formation of adiabatic shear bands [J]. Materials Science and Engineering: A, 1992, 157(2): 195–210. DOI: 10.1016/0921-5093(92)90026-W.
|
[16] |
ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates: Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. DOI: 10.1016/0022-5096(96)00003-8.
|
[17] |
GUO Y Z, LI Y L. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. DOI: 10.1016/S0894-9166(12)60027-5.
|
[18] |
付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004.
FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004.
|
[19] |
GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. DOI: 10.1103/PhysRevLett.122.015503.
|
[20] |
ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. DOI: 10.1016/j.mechmat.2019.103102.
|
[21] |
GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. DOI: 10.1016/j.jmps.2019.103811.
|
[22] |
RITTEL D, WANG Z G, MERZER M. Adiabatic shear failure and dynamic stored energy of cold work [J]. Physical Review Letters, 2006, 96(7): 075502. DOI: 10.1103/PhysRevLett.96.075502.
|
[23] |
RITTEL D, LANDAU P, VENKERT A. Dynamic recrystallization as a potential cause for adiabatic shear failure [J]. Physical Review Letters, 2008, 101(16): 165501. DOI: 10.1103/PhysRevLett.101.165501.
|
[24] |
OSOVSKI S, RITTEL D, LANDAU P, et al. Microstructural effects on adiabatic shear band formation [J]. Scripta Materialia, 2012, 66(1): 9–12. DOI: 10.1016/j.scriptamat.2011.09.014.
|
[25] |
OSOVSKI S, RITTEL D, VENKERT A. The respective influence of microstructural and thermal softening on adiabatic shear localization [J]. Mechanics of Materials, 2013, 56: 11–22. DOI: 10.1016/j.mechmat.2012.09.008.
|
[26] |
RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1/2): 177–185. DOI: 10.1007/s10704-010-9475-8.
|
[27] |
周刚毅, 董新龙, 付应乾. 动态帽型剪切试样分析及实验验证 [J]. 兵工学报, 2017, 38(12): 2455–2462. DOI: 10.3969/j.issn.1000-1093.2017.12.020.
ZHOU G Y, DONG X L, FU Y Q. Analysis and experimental verification of dynamic shear test for hat-shaped specimen [J]. Acta Armamentarii, 2017, 38(12): 2455–2462. DOI: 10.3969/j.issn.1000-1093.2017.12.020.
|
[28] |
XUE Q, MEYERS M A, NESTERENKO V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy [J]. Acta Materialia, 2002, 50(3): 575–596. DOI: 10.1016/s1359-6454(01)00356-1.
|
[29] |
HE J Y, MA Y, YAN D S, et al. Improving ductility by increasing fraction of interfacial zone in low C steel/304 SS laminates [J]. Materials Science and Engineering: A, 2018, 726: 288–297. DOI: 10.1016/j.msea.2018.04.102.
|
1. | 陈梓薇,王仲琦,曾令辉. 基于BP神经网络的爆炸用激波管峰值压力预测方法. 爆炸与冲击. 2024(05): 132-141 . ![]() | |
2. | 康明月,王成,孙鸿雁,李作麟,罗斌. 基于改进的WOA-LSSVM樱桃番茄内部品质检测方法研究. 光谱学与光谱分析. 2023(11): 3541-3550 . ![]() | |
3. | 冷智高,李祥龙,程明,宋春辉,陶子豪. BP神经网络在爆破振动中的研究与应用. 有色金属(矿山部分). 2019(06): 9-12 . ![]() | |
4. | 杨伟,李国平,李夕兵,张钦礼. 爆破荷载下全尾砂胶结充填体破坏规律及防治措施. 矿业研究与开发. 2018(03): 113-118 . ![]() | |
5. | 刘志刚,曹安业,井广成. 煤体卸压爆破参数正交试验优化设计研究. 采矿与安全工程学报. 2018(05): 931-939 . ![]() | |
6. | 李玉能,马建军,池恩安,陈永麟. 基于BP神经网络的高含水岩石爆破震动参数预报. 爆破. 2017(02): 68-73 . ![]() | |
7. | 杨风波,马大为,薛新宇,崔龙飞. 新型路基同心筒热冲击机理与热环境影响因子. 爆炸与冲击. 2016(02): 153-160 . ![]() | |
8. | 李新,曹鹏飞. 基于BP神经网络与经验公式法的地下洞室爆破振速预测及对比研究. 甘肃水利水电技术. 2016(02): 12-15 . ![]() | |
9. | 郭英杰,璩世杰,胡光球. 基于BP神经网络的露天采场爆破振速预测. 现代矿业. 2016(01): 13-16 . ![]() | |
10. | 马威,马飞,郭荣,耿晓光. GA-BP网络在凿岩防卡阀推进压力预测中的应用. 工矿自动化. 2016(07): 44-50 . ![]() | |
11. | 高富强,侯爱军,杨小林. 爆破震动速度峰值预测模型的比较和讨论. 爆破. 2015(02): 17-21 . ![]() | |
12. | 王涛,张建华. 基于BP神经网络的微差爆破震动预测研究. 爆破. 2015(02): 140-143 . ![]() | |
13. | 仲健林,任杰,蔡德咏,胡建国. 自适应底座附加冲击载荷的积分表达和影响因子. 爆炸与冲击. 2015(05): 668-674 . ![]() | |
14. | 李万,张志华,李华,李大伟. 水下爆炸载荷作用下水下目标结构的可靠性研究. 高压物理学报. 2014(03): 324-330 . ![]() | |
15. | 王先义,黄华东,王小委,赵欢,陈桦深,李连超. 基于LM-BPNN方法的爆破震动灾害预测模型. 科学技术与工程. 2014(35): 181-185 . ![]() | |
16. | 刘庆,张光权,吴春平,陶铁军. 基于BP神经网络模型的爆破飞石最大飞散距离预测研究. 爆破. 2013(01): 114-118 . ![]() | |
17. | 罗学东,范新宇,代贞伟,梅年峰,闫苏涛. BP神经网络模型在露天矿爆破振动参数预测中的应用及修正. 中南大学学报(自然科学版). 2013(12): 5019-5024 . ![]() | |
18. | 刘博,史秀志,黄宣东,武永猛,黄丹,罗佳. 基于拟牛顿法的QN-BP预测爆破振动峰值速度. 中国有色金属学报. 2013(05): 1427-1433 . ![]() | |
19. | 马立,徐次雄,欧阳航空,荣伟彬,孙立宁. 基于动量BP神经网络激光陀螺调腔检测方法. 中国激光. 2012(04): 37-44 . ![]() |