Citation: | CAI Yunxiong, JIANG Xinsheng, WANG Shimao, YU Binbin, WANG Zituo, WANG Chunhui, LI Yuxi. Experimental study of gasoline-air mixture explosion in imitated vertical dome oil tank[J]. Explosion And Shock Waves, 2022, 42(10): 105401. doi: 10.11883/bzycj-2022-0012 |
[1] |
COZZANI V, ANTONIONI G, SPADONI G. Quantitative assessment of domino scenarios by a GIS-based software tool [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(5): 463–477. DOI: 10.1016/j.jlp.2005.11.007.
|
[2] |
LANDUCCI G, GUBINELLI G, ANTONIONI G, et al. The assessment of the damage probability of storage tanks in domino events triggered by fire [J]. Accident Analysis & Prevention, 2009, 41(6): 1206–1215. DOI: 10.1016/j.aap.2008.05.006.
|
[3] |
ATKINSON G, COLDRICK S, GANT S, et al. Flammable vapor cloud generation from overfilling tanks: learning the lessons from Buncefield [J]. Journal of Loss Prevention in the Process Industries, 2015, 35(5): 329–338. DOI: 10.1016/j.jlp.2014.11.011.
|
[4] |
HERBERT I. The UK Buncefield incident–The view from a UK risk assessment engineer [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 913–920. DOI: 10.1016/j.jlp.2010.09.001.
|
[5] |
RUI S, WANG C, LUO X, et al. Experimental study on the effects of ignition location and vent burst pressure on vented hydrogen-air deflagrations in a cubic vessel [J]. Fuel, 2020, 278(10): 118342. DOI: 10.1016/j.fuel.2020.118342.
|
[6] |
LI P, HUANG P, LIU Z, et al. Experimental study on vented explosion overpressure of methane/air mixtures in manhole [J]. Journal of Hazardous Materials, 2019, 374(7): 349–355. DOI: 10.1016/j.jhazmat.2019.04.046.
|
[7] |
苏航, 蒋利桥, 曹海亮, 等. 微小空间内丙烷/空气火焰传播特性与加氢爆燃实验 [J]. 爆炸与冲击, 2018, 38(2): 381–389. DOI: 10.11883/bzycj-2016-0198.
SU H, JIANG L Q, CAO H L, et al. Characteristics of propane/air flame propagation and propane/hydrogen/air detonation in a micro chamber [J]. Explosion and Shock Waves, 2018, 38(2): 381–389. DOI: 10.11883/bzycj-2016-0198.
|
[8] |
吴松林, 杜扬, 张培理, 等. 点火方式对受限空间油气爆燃规律的影响 [J]. 化工学报, 2016, 67(4): 1626–1632. DOI: 10.11949/j.issn.0438-1157.20150958.
WU S L. DU Y, ZHANG P L, et al. Effect of ignition node on gasoline-air deflagration behavior in confined space [J]. Journal of Chemical Industry and Engineering, 2016, 67(4): 1626–1632. DOI: 10.11949/j.issn.0438-1157.20150958.
|
[9] |
LI G Q, WU J, WANG S M, et al. Effects of gas concentration and obstacle location on overpressure and flame propagation characteristics of hydrocarbon fuel-air explosion in a semi-confined pipe [J]. Fuel, 2021, 285(9): 119268. DOI: 10.1016/j.fuel.2020.119268.
|
[10] |
李国庆, 杜扬, 齐圣, 等. 障碍物位置和油气浓度对油气泄压爆炸特性影响 [J]. 化工学报, 2018, 69(5): 2327–2336. DOI: 10.11949/j.issn.0438-1157.20171184.
LI G Q, DU Y, QI S, et al. Effects of obstacle position and gas concentration on gasoline-air explosion venting [J]. CIESC Journal, 2018, 69(5): 2327–2336. DOI: 10.11949/j.issn.0438-1157.20171184.
|
[11] |
WANG S M, YAN Z H, LI X D, et al. The venting explosion process of premixed fuel vapour and air in a half-open vessel: An analysis of the overpressure dynamic process and flame evolution behaviour [J]. Fuel, 2020, 268(5): 117508.
|
[12] |
李蒙, 杜扬, 李国庆, 等. 含90°直角弯管结构受限空间油气泄压爆炸实验与大涡模拟研究 [J]. 化工学报, 2018, 69(12): 5370–5378. DOI: 10.11949/j.issn.0438-1157.20180519.
LI M, DU Y, LI G Q, et al. Experimental and large eddy simulation study on gasoline-air mixture explosions in semi-confined pipe with 90° right-angle bend [J]. CIESC Journal, 2018, 69(12): 5370–5378. DOI: 10.11949/j.issn.0438-1157.20180519.
|
[13] |
杜扬, 李蒙, 李国庆, 等. 含双侧分支结构受限空间油气泄压爆炸超压特性与火焰行为 [J]. 化工进展, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.
DU Y, LI M, LI G Q, et al. Effects of bilateral branches structure on characteristics of gasoline-air mixtures explosion overpressure and flame behavior in a semi-confined space [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.
|
[14] |
杜扬, 王世茂, 袁广强, 等. 含弱约束端面短管道油气爆炸特性实验研究 [J]. 爆炸与冲击, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.
DU Y, WANG S M, YUAN G Q, et al. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end [J]. Explosion and Shock Waves, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.
|
[15] |
WANG S M, WU D J, GUO H, et al. Effects of concentration, temperature, ignition energy and relative humidity on the overpressure transients of fuel-air explosion in a medium-scale fuel tank [J]. Fuel, 2020, 259(1): 116265.1–116265.8. DOI: 10.1016/j.fuel.2019.116265.
|
[16] |
CAI Y X, JIANG X S, WANG S M, et al. Experimental study on explosion overpressure and flame propagation characteristics of simulated vertical dome oil tank [J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104752. DOI: 10.1016/j.jlp.2022.104752.
|
[17] |
刘洪涛, 陈志莉, 胡潭高, 等. 油料池火焰红外光谱特性分析研究 [J]. 光谱学与光谱分析, 2016, 36(10): 3442–3448. DOI: 10.3964/j.issn.1000-0593(2016)10-3442-07.
LIU H T, CHEN Z L, HU T G, et al. Analytic study on the characteristics of infrared spectrum of oil pool flame [J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3442–3448. DOI: 10.3964/j.issn.1000-0593(2016)10-3442-07.
|
[18] |
蒋新生, 徐建楠, 冯军, 等. 汽油着火初期光谱特征及燃烧动力学分析 [J]. 发光学报, 2018, 39(11): 1639–1645. DOI: 10.3788/fgxb20183911.1639.
JIANG X S, XU J N, FENG J, et al. Flame spectral characteristics and analysis of combustion kinetics at initial stage of gasoline fire [J]. Chinese Journal of Luminescence, 2018, 39(11): 1639–1645. DOI: 10.3788/fgxb20183911.1639.
|
[19] |
ZHANG P L, WANG J, LIANG J J, et al. Explosions of gasoline vapor/air mixture in closed vessels with different shapes and sizes [J]. Journal of Loss Prevention in the Process Industries, 2018, 57: 327–334. DOI: 10.1016/j.jlp.2018.12.010.
|
[20] |
段晓瑜, 崔庆忠, 郭学永, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究 [J]. 兵工学报, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
DUAN X Y, CUI Q Z, GUO X Y, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast [J]. Acta Armamentarii, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
|
[21] |
ZHOU Z Q, NIE J X, OU Z C, et al. Effects of the aluminum content on the shock wave pressure and the acceleration ability of RDX-based aluminized explosives [J]. Journal of Applied Physics, 2014, 116(14): 113–33305. DOI: 10.1063/1.4897658.
|
[22] |
DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank [J]. International Journal of Impact Engineering, 2011, 38: 61–72. DOI: 10.1016/j.ijimpeng.2010.10.006.
|
[23] |
徐海斌, 张德志, 秦学军, 等. 炸药周围水层对空气冲击波反射超压影响的实验研究 [J]. 兵工学报, 2014, 35(7): 1027–1031. DOI: 10.3969/j.issn.1000-1093.2014.07.014.
XU H B, ZHANG D Z, QIN X J, et al. An investigation on mitigation effect of water surrounding an explosive on reflected overpressure of shock wave [J]. Acta Armamentarii, 2014, 35(7): 1027–1031. DOI: 10.3969/j.issn.1000-1093.2014.07.014.
|
[24] |
杨亚东, 李向东, 王晓鸣. 长方体密闭结构内爆炸冲击波传播与叠加分析模型 [J]. 兵工学报, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.
YANG Y D, LI X D, WANG X M. An analytical model for propagation and superposition of internal explosion shockwaves in closed cuboid structure [J]. Acta Armamentarii, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.
|
[25] |
刘小龙, 黄建国, 雷开卓. 水下等离子体声源的冲击波负压特性 [J]. 物理学报, 2013, 62(20): 1–7. DOI: 10.7498/aps.62.204301.
LIU X L, HUANG J G, LEI K Z. Shock wave negative pressure characteristics of underwater plasma sound source [J]. Acta Physica Sinica, 2013, 62(20): 1–7. DOI: 10.7498/aps.62.204301.
|
[26] |
陈先锋. 丙烷—空气预混火焰微观结构及加速传播过程中的动力学研究[D]. 合肥: 中国科学技术大学, 2007.
CHEN X F. Study on fine flame structure behavior and flame accelerating mechanism of premixed propane-air[D]. Hefei: University of Science and Technology China, 2007.
|
[27] |
WU F, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
|
[28] |
WEI S, YU M, PEI B, et al. Suppression of CO2 and H2O on the cellular instability of premixed methane/air flame [J]. Fuel, 2020, 264(9): 116862. DOI: 10.1016/j.fuel.2019.116862.
|
[29] |
XIAO H H, MAKAROV D, SUN J, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct [J]. Combustion and Flame, 2012, 159(4): 1523–38. DOI: 10.1016/j.combustflame.2011.12.003.
|
[30] |
LI Y C, BI M, GAO W. Theoretical pressure prediction of confined hydrogen explosion considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2019, 57(1): 320–326. DOI: 10.1016/j.jlp.2019.01.001.
|
[1] | LIU Jinchun, WANG Yuying, SUN Ni. Numerical simulation of dynamic response of reinforced masonry wall strengthened with polyurea under gas explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101405. doi: 10.11883/bzycj-2024-0077 |
[2] | ZHANG Suoshuo, NIE Jianxin, ZHANG Jian, SUN Xiaole, GUO Xueyong, ZHANG Tao. Sympathetic detonation of explosive charge in confined space and its protection[J]. Explosion And Shock Waves, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456 |
[3] | LIU Bowen, LONG Renrong, ZHANG Qingming, JU Yuanyuan, ZHONG Xianzhe, WANG Haiyang, LIU Wenjin. Study on the corner overpressure characteristics of concentrated reflected shock wave due to internal blast in cabin[J]. Explosion And Shock Waves, 2023, 43(1): 012201. doi: 10.11883/bzycj-2022-0232 |
[4] | ZHENG Zhihao, REN Huiqi, LONG Zhilin, GUO Ruiqi, CAI Yang, LI Zhijian. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion And Shock Waves, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297 |
[5] | WANG Ziguo, WANG Songtao, KONG Xiangzhen, SUN Yuyan. Anti-penetration capability of pre-stressed confined concrete with truncated cone[J]. Explosion And Shock Waves, 2022, 42(10): 103303. doi: 10.11883/bzycj-2022-0030 |
[6] | YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214 |
[7] | JIAO Xiaolong, ZHAO Pengduo, YAO Yangwu, ZHANG Lei, LI Xudong, CHI Hai. Regulation of different quantity TNT blasting in multi-cabin structure based on simulation and dimensional analysis[J]. Explosion And Shock Waves, 2020, 40(8): 085101. doi: 10.11883/bzyjc-2019-0438 |
[8] | KONG Xiangshao, ZHOU Hu, ZHENG Cheng, WU Weiguo. An equivalent calculation method for confined-blast load based on saturated response time[J]. Explosion And Shock Waves, 2019, 39(9): 092102. doi: 10.11883/bzycj-2018-0183 |
[9] | SONG Ge, LONG Yuan, ZHONG Mingshou, WANG min, WU Jianyu. Similarity relations of underwater explosion in centrifuge and pressurizing vessels[J]. Explosion And Shock Waves, 2019, 39(2): 024102. doi: 10.11883/bzycj-2017-0321 |
[10] | WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123 |
[11] | Hu Yafeng, Jin Janfeng, Gu Wenbin, Chen Liang, Zhang Ruijiang. Protective performance and dynamic response analysis of explosion testing pool[J]. Explosion And Shock Waves, 2017, 37(6): 1001-1009. doi: 10.11883/1001-1455(2017)06-1001-09 |
[12] | Chen Mingsheng, Chun Hua, Li Jianping. Simulation of blast waves interaction for multiple cloud explosion[J]. Explosion And Shock Waves, 2016, 36(1): 81-86. doi: 10.11883/1001-1455(2016)01-0081-06 |
[13] | Jian Guozuo, Zeng Qingxuan, Guo Junfeng, Li Bing, Li Mingyu. Simulation of flyers driven by detonation of copper azide[J]. Explosion And Shock Waves, 2016, 36(2): 248-252. doi: 10.11883/1001-1455(2016)02-0248-05 |
[14] | Xiang Sheng-hai, Xu Wen-long, Zhang Jian, Wang Meng, Huang De-wu, Wang Di. Groove type MEFP formation and penetrating steel target's pattern[J]. Explosion And Shock Waves, 2015, 35(1): 135-139. doi: 10.11883/1001-1455(2015)01-0135-05 |
[15] | Li Li-sha, Du Jian-guo, Zhang Hong-hai, Xie Qing-liang. Numerical simulation of damage of brick wall subjected to blast shock vibration[J]. Explosion And Shock Waves, 2015, 35(4): 459-466. doi: 10.11883/1001-1455(2015)04-0459-08 |
[16] | Xu Hao-ming, Gu Wen-bin, Hu Ya-feng, Wang Zhen-xiong, Chen Jiang-Hai. Explosion-proof structures and delay detonation control of tandem explosively formed projectile charges[J]. Explosion And Shock Waves, 2014, 34(6): 723-729. doi: 10.11883/1001-1455(2014)06-0723-07 |
[17] | HOU Ri-li, ZHOU Pin, PENG Jian-xiang. NumericalsimulationofshockdamageofLY12aluminiumalloysructure[J]. Explosion And Shock Waves, 2012, 32(5): 470-474. doi: 10.11883/1001-1455(2012)05-0470-05 |
[18] | TIAN Yu-bin, LI Zhao, ZHANG Chun-wei. Dynamicresponseofreinforcedmasonrystructureunderblastload[J]. Explosion And Shock Waves, 2012, 32(6): 658-662. doi: 10.11883/1001-1455(2012)06-0658-05 |
[19] | LAI Ming, FENG Shun-shan, HUANG Guang-yan, BIAN Jiang-nan. Damageofdifferentreinforcedstructures subjectedtounderwatercontactexplosion[J]. Explosion And Shock Waves, 2012, 32(6): 599-604. doi: 10.11883/1001-1455(2012)06-0599-05 |
[20] | JIANG Bao-quan, LI Yu-long, LIU Yuan-yong, YU Qing-jun. Effects of SiC particle reinforcement distribution on the penetration of functionally graded armour[J]. Explosion And Shock Waves, 2005, 25(6): 493-498. doi: 10.11883/1001-1455(2005)06-0493-06 |