Citation: | WANG Ziguo, WANG Songtao, KONG Xiangzhen, SUN Yuyan. Anti-penetration capability of pre-stressed confined concrete with truncated cone[J]. Explosion And Shock Waves, 2022, 42(10): 103303. doi: 10.11883/bzycj-2022-0030 |
[1] |
DANCYGIER A N, KATZ A, BENAMOU D, et al. Resistance of double-layer reinforced HPC barriers to projectile impact [J]. International Journal of Impact Engineering, 2014, 67: 39–51. DOI: 10.1016/j.ijimpeng.2014.01.001.
|
[2] |
BRUHL J C, VARMA A H, JOHNSON W H. Design of composite SC walls to prevent perforation from missile impact [J]. International Journal of Impact Engineering, 2015, 75: 75–87. DOI: 10.1016/j.ijimpeng.2014.07.015.
|
[3] |
WAN F, JIANG Z G, TAN Q H, et al. Response of steel-tube-confined concrete targets to projectile impact [J]. International Journal of Impact Engineering, 2016, 94: 50–59. DOI: 10.1016/j.ijimpeng.2016.03.012.
|
[4] |
甄明, 蒋志刚, 万帆, 等. 钢管约束混凝土抗侵彻性能试验 [J]. 国防科技大学学报, 2015, 37(3): 121–127. DOI: 10.11887/j.cn.201503020.
ZHEN M, JIANG Z G, WAN F, et al. Steeltube confined concrete targets penetration experiments [J]. Journal of National University of Defense Technology, 2015, 37(3): 121–127. DOI: 10.11887/j.cn.201503020.
|
[5] |
万帆. 钢管约束混凝土抗侵彻性能与机理研究 [D]. 长沙: 国防科学技术大学, 2014.
WAN F. Investigation on the anti-penetration properties and mechanism of steel-tube-confined concrete targets [D]. Changsha: National University of Defense Technology, 2014.
|
[6] |
石少卿, 尹平, 刘颖芳, 等. 玻璃纤维约束混凝土抗侵彻机理研究 [J]. 玻璃钢/复合材料, 2004(1): 6–7. DOI: 10.3969/j.issn.1003-0999(2004)01-006.
SHI S Q, YIN P, LIU Y F, et al. Research on mechanism of anti-penetration of concrete confined with GFRP [J]. Fiber Reinforced Plastics Composites, 2004(1): 6–7. DOI: 10.3969/j.issn.1003-0999(2004)01-006.
|
[7] |
梁乔恒. UHMWPE纤维混凝土动态材料模型参数与抗多发打击研究 [D]. 长沙: 国防科学技术大学, 2016.
LIANG Q H. Research on dynamic constitutive parameters and penetration properties resisted to multi-impact of UHMWPE fiber reinforced concrete [D]. Changsha: National University of Defense Technology, 2016.
|
[8] |
石少卿, 黄翔宇, 刘颖芳, 等. 多边形钢管混凝土短构件在防护工程中的应用 [J]. 混凝土, 2005(2): 95–98. DOI: 10.3969/j.issn.1002-3550.2005.02.027.
SHI S Q, HUANG X Y, LIU Y F, et al. Application of polygonal short steel tube filled with concrete on the defense work [J]. Concrete, 2005(2): 95–98. DOI: 10.3969/j.issn.1002-3550.2005.02.027.
|
[9] |
王起帆, 石少卿, 王征, 等. 蜂窝遮弹层抗弹丸侵彻实验研究 [J]. 爆炸与冲击, 2016, 36(2): 253–258. DOI: 10.11883/1001-1455(2016)02-0253-06.
WANG Q F, SHI S Q, WANG Z, et al. Experimental study on penetration-resistance characteristics of honeycomb shelter [J]. Explosion and Shock Waves, 2016, 36(2): 253–258. DOI: 10.11883/1001-1455(2016)02-0253-06.
|
[10] |
蒋志刚, 甄明, 刘飞, 等. 钢管约束混凝土抗侵彻机理的数值模拟 [J]. 振动与冲击, 2015, 34(11): 1–6. DOI: 10.13465/j.cnki.jvs.2015.11.001.
JIANG Z G, ZHEN M, LIU F, et al. Simulation of anti-penetration mechanism of steel tube confined concrete [J]. Journal of Vibration and Shock, 2015, 34(11): 1–6. DOI: 10.13465/j.cnki.jvs.2015.11.001.
|
[11] |
徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究 [J]. 爆炸与冲击, 2019, 39(7): 071101. DOI: 10.11883/bzycj-2019-0034.
XU S L, SHAN J F, WANG P F, et al. Penetration performance of concrete under triaxial stress [J]. Explosion and Shock Waves, 2019, 39(7): 071101. DOI: 10.11883/bzycj-2019-0034.
|
[12] |
陈丽娜, 单俊芳, 周李姜, 等. 应力状态对水泥砂浆侵彻性能的影响 [J]. 振动与冲击, 2020, 39(15): 32–40. DOI: 10.13465/j.cnki.jvs.2020.15.005.
CHEN L N, SHAN J F, ZHOU L J, et al. Effects of stress state on penetration performance of cement mortar [J]. Journal of Vibration and Shock, 2020, 39(15): 32–40. DOI: 10.13465/j.cnki.jvs.2020.15.005.
|
[13] |
单俊芳. 三轴应力状态下混凝土动态力学性能及抗弹机理研究 [D]. 合肥: 中国科学技术大学, 2020.
SHAN J F. Investigation on the dynamic mechanical properties and anti-bullet mechanism of concrete under triaxial static loading [D]. Hefei: University of Science and Technology of China, 2020.
|
[14] |
SHERMAN D, BEN-SHUSHAN T. Quasi-Static impact damage in confined ceramic tiles [J]. International Journal of Impact Engineering, 1998, 21(4): 245–265. DOI: 10.1016/S0734-743X(97)00063-8.
|
[15] |
ORPHAL D L, FRANZEN R R. Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s [J]. International Journal of Impact Engineering, 1997, 19(1): 1–13. DOI: 10.1016/0734-743X(95)00064-H.
|
[16] |
ORPHAL D L, FRANZEN R R, CHARTERS A C, et al. Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s [J]. International Journal of Impact Engineering, 1997, 19(1): 15–29. DOI: 10.1016/S0734-743X(96)00004-8.
|
[17] |
ORPHAL D L, FRANZEN R R, PIEKUTOWSKI A J, et al. Penetration of confined aluminum nitride targets by tungsten long rods at 1.5−4.5 km/s [J]. International Journal of Impact Engineering, 1996, 18(4): 355–368. DOI: 10.1016/0734-743X(95)00045-C.
|
[18] |
HU G L, RAMESH K T, CAO B Y, et al. The compressive failure of aluminum nitride considered as a model advanced ceramic [J]. Journal of the Mechanics and Physics of Solids, 2011, 59(5): 1076–1093. DOI: 10.1016/j.jmps.2011.02.003.
|
[19] |
ZHANG R, HAN B, LI L, et al. Influence of prestress on ballistic performance of bi-layer ceramic composite armors: experiments and simulations [J]. Composite Structures, 2019, 227: 111258. DOI: 10.1016/j.compstruct.2019.111258.
|
[20] |
HEARD H C, CLINE C F. Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure [J]. Journal of Materials Science, 1980, 15(8): 1889–1897. DOI: 10.1007/BF00550614.
|
[21] |
胡欣, 王富耻, 王扬卫, 等. 约束应力对AD95陶瓷动态硬度的影响 [J]. 稀有金属材料与工程, 2009, 38(S2): 1164–1166. DOI: 10.3321/j.issn:1002-185X.2009.z2.309.
HU X, WANG F C, WANG Y W, et al. Effect of confined stress on dynamic hardness of ceramic AD95 [J]. Rare Metal Materials and Engineering, 2009, 38(S2): 1164–1166. DOI: 10.3321/j.issn:1002-185X.2009.z2.309.
|
[22] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure [C]//The 14th International Symposium on Ballistic. Quebec: American Defense Preparedness Association, 1993: 591–600.
|
[23] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[24] |
REN G M, WU H, FANG Q, et al. Parameters of Holmquist-Johnson-Cook model for high-strength concrete-like materials under projectile impact [J]. International Journal of Protective Structures, 2017, 8(3): 352–367. DOI: 10.1177/2041419617721552.
|
[25] |
LSTC. LS-DYNA® keyword user’s manual, Version 971 [Z]. Livermore: Livermore Software Technology Corporation, 2007.
|
[26] |
OTTOSEN N S, RISTINMAA M. The mechanics of constitutive modeling [M]. Amsterdam: Elsevier, 2005.
|
[27] |
DENG Y H, TUAN C Y. Design of concrete-filled circular steel tubes under lateral impact [J]. ACI Structural Journal, 2013, 110(4): 691–702.
|
[28] |
李磊. 不同硬度30CrMnSiNi2A钢动态本构与损伤参数研究 [D]. 南京: 南京理工大学, 2017.
|
[29] |
KONG X Z, FANG Q, ZHANG J H, et al. Numerical prediction of dynamic tensile failure in concrete by a corrected strain-rate dependent nonlocal material model [J]. International Journal of Impact Engineering, 2020, 137: 103445. DOI: 10.1016/j.ijimpeng.2019.103445.
|
[30] |
KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
|
[31] |
邓国强, 杨秀敏, 金乾坤. 侵彻爆炸效应数值计算新型岩石本构模型 [J]. 兵工学报, 2012, 33(S2): 375–380.
|
[32] |
邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
DENG G Q, YANG X M. Numerical simulation of damage effect of hyper velocity weapon on ground target [J]. Science & Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
|
[1] | QIAN Bingwen, ZHOU Gang, LI Mingrui, CHEN Chunlin, GAO Pengfei, SHEN Zikai, MA Kun. Influences of material properties of a projectile on hypervelocity penetration depth[J]. Explosion And Shock Waves, 2024, 44(10): 103302. doi: 10.11883/bzycj-2022-0310 |
[2] | YANG Yaozong, KONG Xiangzhen, TANG Junjie, FANG Qin. Numerical simulation and engineering design method for prefabricated concrete bursting layer subjected to projectile penetration[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0279 |
[3] | ZHANG Suoshuo, NIE Jianxin, ZHANG Jian, SUN Xiaole, GUO Xueyong, ZHANG Tao. Sympathetic detonation of explosive charge in confined space and its protection[J]. Explosion And Shock Waves, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456 |
[4] | SI Doudou, PAN Zuanfeng, ZENG Bin, ZHANG Haipeng, GAO Yukui. Analysis of the dynamic response of prestressed concrete frame structures under blast load[J]. Explosion And Shock Waves, 2023, 43(11): 112201. doi: 10.11883/bzycj-2023-0080 |
[5] | CHEN Ya, TAN Chao, GUO Yazhou. Comparative study of numerical simulations of projectile penetration into metal targets[J]. Explosion And Shock Waves, 2022, 42(4): 044201. doi: 10.11883/bzycj-2021-0125 |
[6] | YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214 |
[7] | NIU Zhenkun, CHEN Xiaowei, DENG Yongjun, YAO Yong. Cavity expansion response of concrete targets under penetration[J]. Explosion And Shock Waves, 2019, 39(2): 023301. doi: 10.11883/bzycj-2017-0368 |
[8] | XU Songlin, SHAN Junfang, WANG Pengfei, HU Shisheng. Penetration performance of concrete under triaxial stress[J]. Explosion And Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034 |
[9] | WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123 |
[10] | Qiang Hongfu, Fan Shujia, Chen Fuzhen, Liu Hu. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method[J]. Explosion And Shock Waves, 2016, 36(4): 516-524. doi: 10.11883/1001-1455(2016)04-0516-09 |
[11] | Zhao Xiao-long, Ma Tie-hua, Xu Peng, Fan Jin-biao. Acceleration signal test and analysis for projectile penetrating into concrete[J]. Explosion And Shock Waves, 2014, 34(3): 347-353. doi: 10.11883/1001-1455(2014)03-0347-07 |
[12] | ZhangFeng-guo, LiuJun, LiangLong-he, LouJian-feng, WangZheng. Influenceofaggregateonpenetrationprocessof concretetargetwhennumericalmodeling[J]. Explosion And Shock Waves, 2013, 33(2): 217-221. doi: 10.11883/1001-1455(2013)02-0217-04 |
[13] | XuWei-fang, ZhangFang-ju, ChenYu-ze, . Experimentalstudyonpenetrationresponsesofthinconcretetargets[J]. Explosion And Shock Waves, 2013, 33(2): 169-174. doi: 10.11883/1001-1455(2013)02-0169-06 |
[14] | Lin Hua-ling, Ding Yu-qing, Tang Wen-hui. Factors influencing numerical simulation of concrete penetration[J]. Explosion And Shock Waves, 2013, 33(4): 425-429. doi: 10.11883/1001-1455(2013)04-0425-05 |
[15] | CHEN Shao-hui, LI Zhi-yuan, LEI Bin, Lü Qing-ao. Numericalsimulationofair/steeltargetinterface effectsonparallelinjectingshapedchargejet[J]. Explosion And Shock Waves, 2011, 31(6): 630-634. doi: 10.11883/1001-1455(2011)06-0630-05 |
[16] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[17] | HUANG Feng-lei, ZHANG Lei-lei, DUAN Zhuo-ping. Shaped charge with large cone angle for concrete target[J]. Explosion And Shock Waves, 2008, 28(1): 17-22. doi: 10.11883/1001-1455(2008)01-0017-06 |
[18] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |
[19] | ZHANG De-hai, ZHU Fu-sheng, XING Ji-bo. Application of beam-particle model to the prolem of concrete penetration[J]. Explosion And Shock Waves, 2005, 25(1): 85-89. doi: 10.11883/1001-1455(2005)01-0085-05 |
[20] | MI Shuang-shan, ZHANG Xi-en, TAO Gui-ming. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target[J]. Explosion And Shock Waves, 2005, 25(5): 477-480. doi: 10.11883/1001-1455(2005)05-0477-04 |
1. | 闫作龙,孔祥振,孙宇雁,孙晓晨,吴远,王子国. 锥台嵌挤混凝土预应力分布规律研究. 北京工业大学学报. 2025(01): 72-86 . ![]() | |
2. | 吴远,王子国,孙晓晨,彭永,孙宇雁. 锥台嵌挤预应力约束混凝土抗冲击性能研究. 兵器装备工程学报. 2023(06): 1-10 . ![]() |