Citation: | LIU Feng, LI Qingming. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state[J]. Explosion And Shock Waves, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037 |
[1] |
ABRAMS D A. Effect of rate of application of load on the compressive strength of concrete [J]. American Society for Testing and Materials Journal, 1917, 17(2): 364–377.
|
[2] |
BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
|
[3] |
胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
|
[4] |
FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725–775. DOI: 10.1016/j.ijimpeng.2004.03.005.
|
[5] |
LS-DYNA Support. LS-DYNA user manual R10.0-Vol I [EB/OL]. 2021-09-15. https://www.dyansupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r10.0-vol-i/view.
|
[6] |
Century Dynamics. AUTODYN theory manual (revision 4.3) [M]. Concord: Century Dynamics, Inc., 2005.
|
[7] |
Comite Euro-International du Beton. CEB-FIP model code 1990 [M]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
|
[8] |
TEDESCO J W, ROSS C A. Strain-rate-dependent constitutive equations for concrete [J]. Journal of Pressure Vessel Technology, 1998, 120(4): 398–405. DOI: 10.1115/1.2842350.
|
[9] |
GREEN S J, PERKINS R D. Uniaxial compression test at strain rates from 10−4/s to 104/s on three geologic materials [R]. DASA-2199, Final Rep, 1969: 44.
|
[10] |
BRACE W F, JONES A H. Comparison of uniaxial deformation in shock and static loading of three rocks [J]. Journal of Geophysical Research, 1971, 76(20): 4913–4921. DOI: 10.1029/JB076i020p04913.
|
[11] |
JANACH W. The role of bulking in brittle failure of rocks under rapid compression [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(6): 177–186. DOI: 10.1016/0148-9062(76)91284-5.
|
[12] |
BISCHOFF P H, PERRY S H. Impact behavior of plain concrete loaded in uniaxial compression [J]. Journal of Engineering Mechanics, 1995, 121(6): 685–693. DOI: 10.1061/(ASCE)0733-9399(1995)121:6(685.
|
[13] |
DONZÉ F V, MAGNIER S A, DAUDEVILLE L, et al. Numerical study of compressive behavior of concrete at high strain rates [J]. Journal of Engineering Mechanics, 1999, 125(10): 1154–1163. DOI: 10.1061/(ASCE)0733-9399(1999)125:10(1154.
|
[14] |
GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: Ⅰ. Experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869–886. DOI: 10.1016/S0734-743X(01)00020-3.
|
[15] |
LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
|
[16] |
LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
|
[17] |
ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part Ⅰ: experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327–1334. DOI: 10.1016/j.ijimpeng.2009.04.009.
|
[18] |
ZHANG M, LI Q M, HUANG F L, et al. Inertia-induced radial confinement in an elastic tubular specimen subjected to axial strain acceleration [J]. International Journal of Impact Engineering, 2010, 37(4): 459–464. DOI: 10.1016/j.ijimpeng.2009.09.009.
|
[19] |
LU Y B, LI Q M. Appraisal of pulse-shaping technique in split Hopkinson pressure bar tests for brittle materials [J]. International Journal of Protective Structures, 2010, 1(3): 363–390. DOI: 10.1260/2041-4196.1.3.363.
|
[20] |
LU Y B, LI Q M, MA G W. Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(5): 829–838. DOI: 10.1016/j.ijrmms.2010.03.013.
|
[21] |
LU Y B, LI Q M. A correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing [J]. International Journal of Protective Structures, 2011, 2(1): 127–138. DOI: 10.1260/2041-4196.2.1.127.
|
[22] |
FLORES-JOHNSON E A, LI Q M. Structural effects on compressive strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2017, 109: 408–418. DOI: 10.1016/j.ijimpeng.2017.08.003.
|
[23] |
LIU F, LI Q M. Strain-rate effect on the compressive strength of brittle materials and its implementation into material strength model [J]. International Journal of Impact Engineering, 2019, 130: 113–123. DOI: 10.1016/j.ijimpeng.2019.04.006.
|
[24] |
ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures, 2008, 45(17): 4648–4661. DOI: 10.1016/j.ijsolstr.2008.04.002.
|
[25] |
COTSOVOS D M, PAVLOVIĆ M N. Numerical investigation of concrete subjected to compressive impact loading. Part 1: a fundamental explanation for the apparent strength gain at high loading rates [J]. Computers & Structures, 2008, 86(1/2): 145–163. DOI: 10.1016/j.compstruc.2007.05.014.
|
[26] |
KIM D J, SIRIJAROONCHAI K, EL-TAWIL S, et al. Numerical simulation of the Split Hopkinson Pressure Bar test technique for concrete under compression [J]. International Journal of Impact Engineering, 2010, 37(2): 141–149. DOI: 10.1016/j.ijimpeng.2009.06.012.
|
[27] |
CUSATIS G. Strain-rate effects on concrete behavior [J]. International Journal of Impact Engineering, 2011, 38(4): 162–170. DOI: 10.1016/j.ijimpeng.2010.10.030.
|
[28] |
SONG Z H, LU Y. Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data [J]. International Journal of Impact Engineering, 2012, 46: 41–55. DOI: 10.1016/j.ijimpeng.2012.01.010.
|
[29] |
MU Z C, DANCYGIER A N, ZHANG W, et al. Revisiting the dynamic compressive behavior of concrete-like materials [J]. International Journal of Impact Engineering, 2012, 49: 91–102. DOI: 10.1016/j.ijimpeng.2012.05.002.
|
[30] |
ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
|
[31] |
方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨 [J]. 工程力学, 2014, 31(5): 1–14,26. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.
FANG Q, HONG J, ZHANG J H, et al. Issues of SHPB test on concrete-like material [J]. Engineering Mechanics, 2014, 31(5): 1–14,26. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.
|
[32] |
XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
|
[33] |
LEE S, KIM K M, PARK J, et al. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2018, 113: 191–202. DOI: 10.1016/j.ijimpeng.2017.11.015.
|
[34] |
袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
|
[35] |
HAO Y, HAO H. Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate [J]. Rock Mechanics and Rock Engineering, 2013, 46(2): 373–388. DOI: 10.1007/s00603-012-0268-4.
|
[36] |
LU D C, WANG G S, DU X L, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124–137. DOI: 10.1016/j.ijimpeng.2017.01.011.
|
[37] |
SAUER C, HEINE A, RIEDEL W. Developing a validated hydrocode model for adobe under impact loading [J]. International Journal of Impact Engineering, 2017, 104: 164–176. DOI: 10.1016/j.ijimpeng.2017.01.019.
|
[38] |
YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77. DOI: 10.1016/j.ijimpeng.2016.11.009.
|
[39] |
LUCCIONI B, ISLA F, CODINA R, et al. Experimental and numerical analysis of blast response of high strength fiber reinforced concrete slabs [J]. Engineering Structures, 2018, 175: 113–122. DOI: 10.1016/j.engstruct.2018.08.016.
|
[40] |
MALVERN L E, ROSS C A. Dynamic response of concrete and concrete structures [R]. Gainesville: University of Florida, 1984.
|
[41] |
LIU F, LI Q M. Strain-rate effect of polymers and correction methodology in a SHPB test [J]. International Journal of Impact Engineering, 2022, 161: 104109. DOI: 10.1016/j.ijimpeng.2021.104109.
|
[42] |
BRACE W F, RILEY D K. Static uniaxial deformation of 15 rocks to 30 kb [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1972, 9(2): 271−288. DOI: 10.1016/0148-9062(72)90028-9.
|
[43] |
FORQUIN P, ARIAS A, ZAERA R. An experimental method of measuring the confined compression strength of geomaterials [J]. International Journal of Solids and Structures, 2007, 44(13): 4291–4317. DOI: 10.1016/j.ijsolstr.2006.11.022.
|
[44] |
PIOTROWSKA E, FORQUIN P, MALECOT Y. Experimental study of static and dynamic behavior of concrete under high confinement: effect of coarse aggregate strength [J]. Mechanics of Materials, 2016, 92: 164–174. DOI: 10.1016/j.mechmat.2015.09.005.
|
[45] |
XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. DOI: 10.1016/j.mechmat.2019.103220.
|
[46] |
徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
|
[47] |
JOHNSON G, HOLMQUIST T, GERLACH C. Strain-rate effects associated with the HJC concrete model [C] // 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Arcachon, France, 2018: 01008. DOI: 10.1051/epjconf/201818301008.
|
[48] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C] // Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 591-600.
|
[49] |
DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design [J]. Quarterly of Applied Mathematics, 1952, 10(2): 157–165. DOI: 10.1090/qam/48291.
|
[50] |
TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
|
[51] |
SIMULIA. Abaqus analysis user’s guide (Version 6. 13) [Z]. SIMULIA, 2013.
|
[52] |
HAO Y, HAO H, LI Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate [J]. International Journal of Impact Engineering, 2013, 60: 82–106. DOI: 10.1016/j.ijimpeng.2013.04.008.
|
[53] |
AL-SALLOUM Y, ALMUSALLAM T, IBRAHIM S M, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments [J]. Cement and Concrete Composites, 2015, 55: 34–44. DOI: 10.1016/j.cemconcomp.2014.07.011.
|
[54] |
CUI J, HAO H, SHI Y C, et al. Volumetric properties of concrete under true triaxial dynamic compressive loadings [J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019126. DOI: 10.1061/(ASCE)MT.1943-5533.0002776.
|