Volume 43 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Bin, LI Jicheng, CHEN Jianliang, YANG Pu, HE Liling, CHEN Gang. Loading characteristics and structural response of a warhead during drop impact[J]. Explosion And Shock Waves, 2023, 43(3): 033201. doi: 10.11883/bzycj-2022-0098
Citation: ZHANG Bin, LI Jicheng, CHEN Jianliang, YANG Pu, HE Liling, CHEN Gang. Loading characteristics and structural response of a warhead during drop impact[J]. Explosion And Shock Waves, 2023, 43(3): 033201. doi: 10.11883/bzycj-2022-0098

Loading characteristics and structural response of a warhead during drop impact

doi: 10.11883/bzycj-2022-0098
  • Received Date: 2022-03-14
  • Rev Recd Date: 2022-06-01
  • Available Online: 2022-06-06
  • Publish Date: 2023-03-05
  • To promote the explosive safety assessment and the warhead structure design, the loading characteristics and structural response of the warhead during the drop impact process were analyzed based on numerical simulation and shock wave analysis, focusing on the deformation and damage characteristics of the explosive subassembly. And the influences of various factors, including drop posture, explosive configuration, drop height, etc., were discussed in detail. In the numerical simulations, materials were characterized by the viscoplasticity constitutive model combined with the accumulative damage model, which considers the effects of strain rate and temperature. The thermodynamic equation of state was employed to calculate the pressure in materials during the deformation process. Firstly, the effect of drop posture was investigated by comparative analysis among five typical cases, i.e., tail-downward vertical drop, nose-downward vertical drop, horizontal drop, tail-downward inclined drop, and nose-downward inclined drop. Secondly, the influence of warhead configuration was analyzed based on three configurations, i.e., one explosive segment warhead, eight explosive segment warheads, and eight explosive segments combined with a separator warhead. Finally, the effect of drop height was discussed, where the height ranges from 3 m to 40 m. Related results indicate that during the drop impact process, the deformation of the explosive subassembly is dominated by the stress wave propagation rather than the interaction between the explosive subassembly and warhead shell. Correspondingly, the severest damage zone in the explosive subassembly is located in its internal region instead of the outer region, which contacts the warhead shell. The transmission of stress waves between explosive subassembly and warhead shell and the reflection and superposition of stress waves within the structures dominate the major deformation region in the explosive subassembly and the deformation degree. Furthermore, the drop posture significantly affects the response characteristics and the deformation of the explosive subassembly. The most dangerous drop posture which leads to high safety risk is, in turn, tail-downward vertical drop, horizontal drop, nose-downward vertical drop, and inclined drop. The explosive configuration also acts an important role. The explosive segment interface can easily induce an increase in the deformation degree, but it has little influence on the acceleration and distribution of the deformation region. The separator usually leads to high acceleration, and it changes the location of the deformation region as well as the deformation degree. Comparatively, the drop height has little influence on the distribution feature of the deformation zone. It mainly affects the loading amplitude, the degree of the deformation, the size of the deformation zone, etc. The influences of these factors increase with increasing drop height. The present method, which investigates the structural response of complex warheads based on numerical simulation integrated with stress wave analysis, has built an effective bridge linking the basic theory and the engineering application.
  • loading
  • [1]
    张学伦. 战斗部跌落安全性试验方法的述评 [J]. 兵器装备工程学报, 2018, 39(7): 16–19. DOI: 10.11809/bqzbgcxb2018.07.004.

    ZHANG X L. Review of test methods for warhead drop safety [J]. Journal of Ordnance Equipment Engineering, 2018, 39(7): 16–19. DOI: 10.11809/bqzbgcxb2018.07.004.
    [2]
    谢涛, 吕红超, 郝陈朋. 基于LS-DYNA的导弹战斗部跌落安全性分析 [J]. 兵器装备工程学报, 2018, 39(8): 26–29. DOI: 10.11809/bqzbgcxb2018.08.006.

    XIE T, LYU H C, HAO C P. Analysis on drop safety of missile warhead based on LS-DYNA [J]. Journal of Ordnance Equipment Engineering, 2018, 39(8): 26–29. DOI: 10.11809/bqzbgcxb2018.08.006.
    [3]
    李广嘉, 周涛, 曹玉武, 等. 带舱大型战斗部跌落响应数值分析 [J]. 高压物理学报, 2018, 32(4): 045106. DOI: 10.11858/gywlxb.20170584.

    LI G J, ZHOU T, CAO Y W, et al. Numerical analysis of falling response of large warhead in cabin [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045106. DOI: 10.11858/gywlxb.20170584.
    [4]
    王晨, 陈朗, 鲁峰, 等. 炸药跌落响应数值模拟分析 [J]. 含能材料, 2012, 20(6): 748–753. DOI: 10.3969/j.issn.1006-9941.2012.06.019.

    WANG C, CHEN L, LU F, et al. Numerical simulation for spigot tests [J]. Chinese Journal of Energetic Materials, 2012, 20(6): 748–753. DOI: 10.3969/j.issn.1006-9941.2012.06.019.
    [5]
    DAI X G, HUANG Q, HUANG F L, et al. The development of a confined impact test for evaluating the safety of polymer-bonded explosives during warhead penetration [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 665–673. DOI: 10.1002/prep.201400256.
    [6]
    PICART D, JUNQUA-MOULLET A. Oblique impacts and friction of HMX and/or TATB-based PBXs [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(12): 1431–1438. DOI: 10.1002/prep.201700184.
    [7]
    PARKER G R, HOLMES M D, HEATWOLE E M, et al. Direct observation of frictional ignition in dropped HMX-based polymer-bonded explosives [J]. Combustion and Flame, 2020, 221: 180–193. DOI: 10.1016/j.combustflame.2020.07.028.
    [8]
    Jane’s IHS Markit. BLU-109/B penetrator [J]. Jane’s Air-Launched Weapons, 2019.
    [9]
    邓佳杰, 张先锋, 陈东东, 等. 串联随进弹侵彻预开孔靶弹道轨迹的数值模拟 [J]. 兵工学报, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.

    DENG J J, ZHANG X F, CHEN D D, et al. Numerical simulation of the trajectory of travelling projectile penetrating into pre-drilled target [J]. Acta Armamentarii, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.
    [10]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands: International Ballistics Committee, 1983: 541-547.
    [11]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [12]
    王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.
    [13]
    田杰, 胡时胜. G50钢动态力学性能的实验研究 [J]. 工程力学, 2006, 23(6): 107–109,101. DOI: 10.3969/j.issn.1000-4750.2006.06.019.

    TIAN J, HU S S. Research of dynamic mechanical behaviors of G50 steel [J]. Engineering Mechanics, 2006, 23(6): 107–109,101. DOI: 10.3969/j.issn.1000-4750.2006.06.019.
    [14]
    陈刚, 陈忠富, 陶俊林, 等. TC4动态力学性能研究 [J]. 实验力学, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.

    CHEN G, CHEN Z F, TAO J L, et al. Study on plastic constitutive relationship parameters of TC4 titanium [J]. Journal of Experimental Mechanics, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.
    [15]
    MEYER JR H W, KLEPONIS D S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration [J]. International Journal of Impact Engineering, 2001, 26(1): 509–521. DOI: 10.1016/S0734-743X(01)00107-5.
    [16]
    郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.

    GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
    [17]
    LI J C, CHEN X W, HUANG F L. FEM analysis on the self-sharpening behavior of tungsten fiber/metallic glass matrix composite long rod [J]. International Journal of Impact Engineering, 2015, 86: 67–83. DOI: 10.1016/j.ijimpeng.2015.07.006.
    [18]
    LI J C, CHEN X W, HUANG F L. Ballistic performance of tungsten particle / metallic glass matrix composite long rod [J]. Defence Technology, 2019, 15(2): 132–145. DOI: 10.1016/j.dt.2018.06.009.
    [19]
    陈建良, 李继承. 钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究 [J]. 爆炸与冲击, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.

    CHEN J L, LI J C. Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods [J]. Explosion and Shock Waves, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.
    [20]
    DAI X G, WEN Y S, HUANG H, et al. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer-bonded explosives under different temperatures [J]. Journal of Applied Physics, 2013, 114(11): 114906. DOI: 10.1063/1.4820248.
    [21]
    李尚昆, 黄西成, 王鹏飞. 高聚物黏结炸药的力学性能研究进展 [J]. 火炸药学报, 2016, 39(4): 1–11. DOI: 10.14077/j.issn.1007-7812.2016.04.001.

    LI S K, HUANG X C, WANG P F. Recent advances in the investigation on mechanical properties of PBX [J]. Chinese Journal of Explosives and Propellants, 2016, 39(4): 1–11. DOI: 10.14077/j.issn.1007-7812.2016.04.001.
    [22]
    魏强, 黄西成, 陈刚, 等. 高聚物粘结炸药动态损伤破坏的数值刻画 [J]. 兵工学报, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.

    WEI Q, HUANG X C, CHEN G, et al. Numerical characterization of dynamic damage of PBX explosive [J]. Acta Armamentarii, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.
    [23]
    WANG X J, WU Y Q, HUANG F L. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading [J]. Journal of Hazardous Materials, 2017, 321: 256–267. DOI: 10.1016/j.jhazmat.2016.08.061.
    [24]
    胡偲, 吴艳青, 黄风雷. 高温下带金属壳PBX炸药低速撞击敏感性数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.

    HU C, WU Y Q, HUANG F L. Numerical simulation of confined PBX charge under low velocity impact at high temperature [J]. Explosion and Shock Waves, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.
    [25]
    傅华, 李俊玲, 谭多望. PBX炸药本构关系的实验研究 [J]. 爆炸与冲击, 2012, 32(3): 231–236. DOI: 10.11883/1001-1455(2012)03-0231-06.

    FU H, LI J L, TAN D W. Experimental study on constitutive relations for plastic-bonded explosives [J]. Explosion and Shock Waves, 2012, 32(3): 231–236. DOI: 10.11883/1001-1455(2012)03-0231-06.
    [26]
    王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985.
    [27]
    高金霞, 赵卫刚, 郑腾. 侵彻战斗部装药抗过载技术研究 [J]. 火工品, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.

    GAO J X, ZHAO W G, ZHENG T. Study on the anti-overloading technique for penetrating warhead charge [J]. Initiators and Pyrotechnics, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.
    [28]
    MA D Z, CHEN P W, ZHOU Q, et al. Ignition criterion and safety prediction of explosives under low velocity impact [J]. Journal of Applied Physics, 2013, 114(11): 113505. DOI: 10.1063/1.4821431.
    [29]
    ZEMAN S, JUNGOVÁ M. Sensitivity and performance of energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 426–451. DOI: 10.1002/prep.201500351.
    [30]
    LIU M, HUANG X C, WU Y Q, et al. Numerical simulations of the damage evolution for plastic-bonded explosives subjected to complex stress states [J]. Mechanics of Materials, 2019, 139: 103179. DOI: 10.1016/j.mechmat.2019.103179.
    [31]
    LIU M, HUANG X C, WU Y Q, et al. Modeling of the deformation and damage of plastic-bonded explosive in consideration of pressure and strain rate effects [J]. International Journal of Impact Engineering, 2020, 146: 103722. DOI: 10.1016/j.ijimpeng.2020.103722.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(5)

    Article Metrics

    Article views (542) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return