Citation: | ZHANG Bin, LI Jicheng, CHEN Jianliang, YANG Pu, HE Liling, CHEN Gang. Loading characteristics and structural response of a warhead during drop impact[J]. Explosion And Shock Waves, 2023, 43(3): 033201. doi: 10.11883/bzycj-2022-0098 |
[1] |
张学伦. 战斗部跌落安全性试验方法的述评 [J]. 兵器装备工程学报, 2018, 39(7): 16–19. DOI: 10.11809/bqzbgcxb2018.07.004.
ZHANG X L. Review of test methods for warhead drop safety [J]. Journal of Ordnance Equipment Engineering, 2018, 39(7): 16–19. DOI: 10.11809/bqzbgcxb2018.07.004.
|
[2] |
谢涛, 吕红超, 郝陈朋. 基于LS-DYNA的导弹战斗部跌落安全性分析 [J]. 兵器装备工程学报, 2018, 39(8): 26–29. DOI: 10.11809/bqzbgcxb2018.08.006.
XIE T, LYU H C, HAO C P. Analysis on drop safety of missile warhead based on LS-DYNA [J]. Journal of Ordnance Equipment Engineering, 2018, 39(8): 26–29. DOI: 10.11809/bqzbgcxb2018.08.006.
|
[3] |
李广嘉, 周涛, 曹玉武, 等. 带舱大型战斗部跌落响应数值分析 [J]. 高压物理学报, 2018, 32(4): 045106. DOI: 10.11858/gywlxb.20170584.
LI G J, ZHOU T, CAO Y W, et al. Numerical analysis of falling response of large warhead in cabin [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045106. DOI: 10.11858/gywlxb.20170584.
|
[4] |
王晨, 陈朗, 鲁峰, 等. 炸药跌落响应数值模拟分析 [J]. 含能材料, 2012, 20(6): 748–753. DOI: 10.3969/j.issn.1006-9941.2012.06.019.
WANG C, CHEN L, LU F, et al. Numerical simulation for spigot tests [J]. Chinese Journal of Energetic Materials, 2012, 20(6): 748–753. DOI: 10.3969/j.issn.1006-9941.2012.06.019.
|
[5] |
DAI X G, HUANG Q, HUANG F L, et al. The development of a confined impact test for evaluating the safety of polymer-bonded explosives during warhead penetration [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 665–673. DOI: 10.1002/prep.201400256.
|
[6] |
PICART D, JUNQUA-MOULLET A. Oblique impacts and friction of HMX and/or TATB-based PBXs [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(12): 1431–1438. DOI: 10.1002/prep.201700184.
|
[7] |
PARKER G R, HOLMES M D, HEATWOLE E M, et al. Direct observation of frictional ignition in dropped HMX-based polymer-bonded explosives [J]. Combustion and Flame, 2020, 221: 180–193. DOI: 10.1016/j.combustflame.2020.07.028.
|
[8] |
Jane’s IHS Markit. BLU-109/B penetrator [J]. Jane’s Air-Launched Weapons, 2019.
|
[9] |
邓佳杰, 张先锋, 陈东东, 等. 串联随进弹侵彻预开孔靶弹道轨迹的数值模拟 [J]. 兵工学报, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.
DENG J J, ZHANG X F, CHEN D D, et al. Numerical simulation of the trajectory of travelling projectile penetrating into pre-drilled target [J]. Acta Armamentarii, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.
|
[10] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands: International Ballistics Committee, 1983: 541-547.
|
[11] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[12] |
王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.
|
[13] |
田杰, 胡时胜. G50钢动态力学性能的实验研究 [J]. 工程力学, 2006, 23(6): 107–109,101. DOI: 10.3969/j.issn.1000-4750.2006.06.019.
TIAN J, HU S S. Research of dynamic mechanical behaviors of G50 steel [J]. Engineering Mechanics, 2006, 23(6): 107–109,101. DOI: 10.3969/j.issn.1000-4750.2006.06.019.
|
[14] |
陈刚, 陈忠富, 陶俊林, 等. TC4动态力学性能研究 [J]. 实验力学, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.
CHEN G, CHEN Z F, TAO J L, et al. Study on plastic constitutive relationship parameters of TC4 titanium [J]. Journal of Experimental Mechanics, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.
|
[15] |
MEYER JR H W, KLEPONIS D S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration [J]. International Journal of Impact Engineering, 2001, 26(1): 509–521. DOI: 10.1016/S0734-743X(01)00107-5.
|
[16] |
郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
|
[17] |
LI J C, CHEN X W, HUANG F L. FEM analysis on the self-sharpening behavior of tungsten fiber/metallic glass matrix composite long rod [J]. International Journal of Impact Engineering, 2015, 86: 67–83. DOI: 10.1016/j.ijimpeng.2015.07.006.
|
[18] |
LI J C, CHEN X W, HUANG F L. Ballistic performance of tungsten particle / metallic glass matrix composite long rod [J]. Defence Technology, 2019, 15(2): 132–145. DOI: 10.1016/j.dt.2018.06.009.
|
[19] |
陈建良, 李继承. 钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究 [J]. 爆炸与冲击, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.
CHEN J L, LI J C. Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods [J]. Explosion and Shock Waves, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.
|
[20] |
DAI X G, WEN Y S, HUANG H, et al. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer-bonded explosives under different temperatures [J]. Journal of Applied Physics, 2013, 114(11): 114906. DOI: 10.1063/1.4820248.
|
[21] |
李尚昆, 黄西成, 王鹏飞. 高聚物黏结炸药的力学性能研究进展 [J]. 火炸药学报, 2016, 39(4): 1–11. DOI: 10.14077/j.issn.1007-7812.2016.04.001.
LI S K, HUANG X C, WANG P F. Recent advances in the investigation on mechanical properties of PBX [J]. Chinese Journal of Explosives and Propellants, 2016, 39(4): 1–11. DOI: 10.14077/j.issn.1007-7812.2016.04.001.
|
[22] |
魏强, 黄西成, 陈刚, 等. 高聚物粘结炸药动态损伤破坏的数值刻画 [J]. 兵工学报, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.
WEI Q, HUANG X C, CHEN G, et al. Numerical characterization of dynamic damage of PBX explosive [J]. Acta Armamentarii, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.
|
[23] |
WANG X J, WU Y Q, HUANG F L. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading [J]. Journal of Hazardous Materials, 2017, 321: 256–267. DOI: 10.1016/j.jhazmat.2016.08.061.
|
[24] |
胡偲, 吴艳青, 黄风雷. 高温下带金属壳PBX炸药低速撞击敏感性数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.
HU C, WU Y Q, HUANG F L. Numerical simulation of confined PBX charge under low velocity impact at high temperature [J]. Explosion and Shock Waves, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.
|
[25] |
傅华, 李俊玲, 谭多望. PBX炸药本构关系的实验研究 [J]. 爆炸与冲击, 2012, 32(3): 231–236. DOI: 10.11883/1001-1455(2012)03-0231-06.
FU H, LI J L, TAN D W. Experimental study on constitutive relations for plastic-bonded explosives [J]. Explosion and Shock Waves, 2012, 32(3): 231–236. DOI: 10.11883/1001-1455(2012)03-0231-06.
|
[26] |
王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985.
|
[27] |
高金霞, 赵卫刚, 郑腾. 侵彻战斗部装药抗过载技术研究 [J]. 火工品, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.
GAO J X, ZHAO W G, ZHENG T. Study on the anti-overloading technique for penetrating warhead charge [J]. Initiators and Pyrotechnics, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.
|
[28] |
MA D Z, CHEN P W, ZHOU Q, et al. Ignition criterion and safety prediction of explosives under low velocity impact [J]. Journal of Applied Physics, 2013, 114(11): 113505. DOI: 10.1063/1.4821431.
|
[29] |
ZEMAN S, JUNGOVÁ M. Sensitivity and performance of energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 426–451. DOI: 10.1002/prep.201500351.
|
[30] |
LIU M, HUANG X C, WU Y Q, et al. Numerical simulations of the damage evolution for plastic-bonded explosives subjected to complex stress states [J]. Mechanics of Materials, 2019, 139: 103179. DOI: 10.1016/j.mechmat.2019.103179.
|
[31] |
LIU M, HUANG X C, WU Y Q, et al. Modeling of the deformation and damage of plastic-bonded explosive in consideration of pressure and strain rate effects [J]. International Journal of Impact Engineering, 2020, 146: 103722. DOI: 10.1016/j.ijimpeng.2020.103722.
|